Folia Geobotanica

, Volume 31, Issue 1, pp 143–151 | Cite as

Sulphide utilization and injuries in hypoxic roots and rhizomes of common reed (Phragmites australis)

  • Konrad Fürtig
  • Adrian Rüegsegger
  • Christian Brunold
  • Roland Brändle


The presented investigations have been carried out in order to estimate toxic sulphide levels and to examine detoxification capabilities in roots and rhizomes of the common reed (Phragmites australis).

Underground organs of common reed are sensitive towards sulphide above 1 mM applied exogenously under hypoxia. However, certain tolerance may be achieved by sulphide detoxification. Accumulated sulphide is partially used for the synthesis of non-toxic thiols, mainly glutathione. But the detoxification capacity of the underground organs is limited. Maximum concentrations of thiols are about 60 nmol/g−1 fw in roots and 300 nmol/g−1 fw in rhizomes.

Energy metabolism is considerably affected by low sulphide concentrations of 1 mM for 4 days, and immediately disturbed by increased concentrations up to 6 mM sulphide. Adenylate energy charge, total adenylates, posthypoxic respiration, and fermentation capacity decrease significantly. Roots are more sensitive than rhizomes.


Adenylates Detoxification Energy metabolism Glutathione Thiols Viability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong J. &Armstrong W. (1988):Phragmites australis—a preliminary study of soil-oxidizing sites and internal gas transport pathways.New Phytol. 108: 373–382.CrossRefGoogle Scholar
  2. Armstrong J., Armstrong W. & van der Putten (1996):Phragmites die-back: bud a root death, blockages within the aeration and vascular system and the role of phytotoxins.New Phytol. (in press).Google Scholar
  3. Armstrong W., Brändle R. &Jackson M.B. (1994): Mechanisms of flood tolerance in plants.Acta Bot. Neerl. 43: 307–358.Google Scholar
  4. Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Analytical Biochem. 72: 248–254.CrossRefGoogle Scholar
  5. Bradley P.M. &Morris J.T. (1990): Influence of oxygen and sulfide concentration on nitrogen uptake kinetics inSpartina alterniflora.Ecology 7: 282–287.CrossRefGoogle Scholar
  6. Brändle R. (1983): Evolution der Gärungskapazität in den flut- und anoxiatoleranten Rhizomen vonPhalaris arundinacea, Phragmites communis, Schoenoplectus lacustris undTypha latifolia.Bot. Helv. 93: 39–45.Google Scholar
  7. Bucher M. &Kuhlemeier C. (1993): Long-term anoxia tolerance. Multi-level regulation of gene expression in the amphibious plantAcorus calamus L.Pl. Physiol. 103: 441–448.CrossRefGoogle Scholar
  8. Crawford R.M.M. (1992): Oxygen availability as an ecological limit to plant distribution.Advances Ecol. Res. 23: 93–185.CrossRefGoogle Scholar
  9. Grill D. &Esterbauer H. (1973): Quantitative Bestimmung wasserlöslicher Sulfhydrylverbindungen in gesunden und geschädigten Nadeln vonPicea abies.Phyton (Horn) 15: 87–101.Google Scholar
  10. Hock B. &Elstner E.F. (1988):Schadwirkungen auf Pflanzen. Lehrbuch der Pflanzentoxikologie. BI-Wissenschaftsverlag, Mannheim.Google Scholar
  11. Koch M.S. &Mendelssohn I.A. (1989): Sulphide as a soil phytotoxin: Differential responses in two marsh species.J. Ecol. 77: 565–578.CrossRefGoogle Scholar
  12. Koch M.S., Mendelssohn I.A. &McKee K.L. (1990): Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes.Limnol. & Oceanogr. 35: 399–408.CrossRefGoogle Scholar
  13. Melzer A. &Steinberg C. (1983): Nutrient cycling in freshwater ecosystems. (In:Pirson A. &Zimmermann M.H. (eds.), Encyclopedia of plant physiology. New Series Vol. 12D). In:Lange O.L., Nobel P.S., Osmond C.B. &Ziegler H. (eds.),Physiological plant ecology IV. Ecosystem processes: Mineral cycling, productivity, and man's influence, Springer Verlag, Berlin, pp. 47–84.Google Scholar
  14. Ostendorp W. (1989): “Die-back” of reeds in Europe—a critical review of literature.Aquatic Bot. 35: 5–26.CrossRefGoogle Scholar
  15. Pearson J. &Havill D.C. (1988): The effect of hypoxia and sulphide on culture-grown wetland and non-wetland plants. II. Metabolic and physiological changes.J. Exp. Bot. 39: 431–439.CrossRefGoogle Scholar
  16. Pezeshki S.R., Pan S.Z., Delaune R.D. &Patrick W.H., Jr. (1988): Sulfide-induced toxicity: Inhibition of carbon assimilation inSpartina alterniflora.Photosynthetica 22: 437–442.Google Scholar
  17. Pradet A. &Raymond P. (1983): Adenine nucleotide ratios and adenylate energy charge in energy metabolism.Annual Rev. Pl. Physiol. 34: 199–224.CrossRefGoogle Scholar
  18. Rennenberg H. &Lamoureux G.L. (1990): Physiological processes that modulate the concentration of glutathione in plant cells. In:Rennenberg H. et al. (eds.),Sulfur nutrition and sulfur assimilation in higher plants, SPB Academic Publishing, The Hague, pp. 53–65.Google Scholar
  19. Rüegsegger A. &Brunold C. (1992): Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings.Pl. Physiol. 99: 428–433.Google Scholar
  20. Sieber M. &Brändle R. (1991): Energy metabolism in rhizomes ofAcorus calamus (L.) and in tubers ofSolanum tuberosum (L.) with regard to their anoxia tolerance.Bot. Acta 104: 279–282.Google Scholar
  21. Siegel L.M. (1965). A direct microdetermination for sulfide.Analytical Biochem. 11: 126–132.CrossRefGoogle Scholar
  22. Vismann B. (1991): Sulfide tolerance: Physiological mechanisms and ecological implications.Ophelia 34: 1–27.Google Scholar
  23. Weber M. &Brändle R. (1996): Some aspects of the extreme anoxia tolerance of the sweet flag,Acorus calamus L.Folia Geobot. Phytotax. 31: 37–46.Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 1996

Authors and Affiliations

  • Konrad Fürtig
    • 1
  • Adrian Rüegsegger
    • 1
  • Christian Brunold
    • 1
  • Roland Brändle
    • 1
  1. 1.Institute of Plant PhysiologyUniversity of BernBernSwitzerland

Personalised recommendations