Advertisement

Folia Geobotanica

, Volume 31, Issue 1, pp 37–46 | Cite as

Some aspects of the extreme anoxia tolerance of the sweet flag,Acorus calamus L.

  • Michel Weber
  • Roland Brändle
Article

Abstract

Acorus calamus L. is a neophyte in Europe with remarkable properties. Among other things, it is the most anoxial tolerant species and a competitive invader at eutrophic sites. The following overview presents the most recent work on these subjects. Carbohydrates of the rhizomes sustain anaerobic ATP production for very long periods. Ethanolic fermentation naturally occurs in winter and produces rather low, but sufficient amounts of ATP for survival, as shown by adenylate energy charge and total adenylate content. Fermentation energy is mainly used for the synthesis and preservation of essential macromolecules, such as proteins and membrane lipids. The extent of these processes is unique. Moreover, ammonia and sulphide uptake is maintained during the cold season. Both ions are detoxified to alanine and thiols which are translocated into the rhizome, where the nitrogen of alanine is used to form arginine. Overwintering leaves contain asparagine instead of arginine. Recycled nitrogen compounds from the rapidly degrading summer leaves return into the rhizomes. Therefore, the nitrogen nutrition consists of an external and internal cycle. The abundance of carbohydrates and nitrogen compounds allows spring shoot growth earlier than other species. These strategies could contribute markedly to the competitive power ofA. calamus at its natural site.

Keywords

Ammonia Energy metabolism Fermentation Macromolecule synthesis Membrane stability Oxygen deprivation Sulphide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amelunxen F. &Gronau G. (1969): Elektronenmikroskopische Untersuchungen an den Ölzellen vonAcorus calamus L.Z. Pflanzenphysiol. 60: 156–168.Google Scholar
  2. Armstrong W., Brändle R. &Jackson M.B. (1994): Mechanisms of flooding resistance in plants.Acta Bot. Neerl. 43: 307–358.Google Scholar
  3. Brändle R. (1991): Flooding resistance of rhizomatous amphibious plants. In:Jackson M.B., Davies D.D. &Lambers H. (eds.),Plant life under oxygen deprivation, SPB Academic Publishing, The Hague, pp. 35–46.Google Scholar
  4. Boerner R.E.J. (1984): Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility.J. Appl. Ecol. 21: 1029–1040.CrossRefGoogle Scholar
  5. Bucher M. &Kuhlemeier C. (1993): Long-term anoxia tolerance. Multi-level regulation of gene expression in the amphibious plantAcorus calamus L.Pl. Physiol. 103: 441–448.CrossRefGoogle Scholar
  6. Bucher M., Bränder R. &Kuhlemeier C. (1996): Glycotic gene expression in amphibiousAcorus calamus L. under natural conditions.Pl. & Soil 178: 75–82.CrossRefGoogle Scholar
  7. Crawford R.M.M. (1992): Oxygen availability as an ecological limit to plant distribution.Advances Ecol. Res. 23: 93–185.Google Scholar
  8. Dykyjová D. (1980): Production ecology ofAcorus calamus.Folia Geobot. Phytotax. 15: 29–57.Google Scholar
  9. Draper N.R. &Smith H. (1981).Applied regression analysis. John Wiley & Sons, New York.Google Scholar
  10. Elstner E.F. (1990).Der Sauerstoff. Biochemie, Biologie, Medizin. B-I-Wissenschaftsverlag, Mannheim, Wien, Zürich.Google Scholar
  11. Good A.G. &Muench D.G. (1992): Purification and characterisation of anaerobically induced alanine aminotransferase from barley roots.Pl. Physiol. 101: 1520–1525.Google Scholar
  12. Haldemann C. &Brändle R. (1986): Seasonal variations of reserves and of fermentation processes in wetland plant rhizomes at the natural site.Flora 178: 307–313.Google Scholar
  13. Henzi T. &Brändle R. (1993): Long term survival of rhizomatous species under oxygen deprivation. In:Jackson M.B. &Black C.R. (eds.),Interacting stresses on plants in a changing climate, NATO Series vol. 1 (16), Springer Verlag, Berlin, pp. 305–314.Google Scholar
  14. Joly C.A. &Brändle R. (1995): Fermentation and adenylate metabolism ofHedychium coronarium J. G. Koenig (Zingiberaceae) andAcorus calamus L. (Araceae) under hypoxia and anoxia.Funct. Ecol. 9: 505–510.CrossRefGoogle Scholar
  15. Kühl H. &Kohl J.-K. (1993): Seasonal nitrogen dynamics in reed beds (Phragmites australis (Cav.) Trin. exSteudel) in relation to productivity.Hydrobiologia 251: 1–12.CrossRefGoogle Scholar
  16. Mehrer I. &Mohr H. (1989): Ammonium toxicity: description of the syndrome inSinapis alba and the search for its causation.Physiol. Pl. 77: 545–554.CrossRefGoogle Scholar
  17. Menegus F., Cattaruzza L. &Molinari H. &Ragg E. (1993): Rice and wheat seedlings as plant models of high and low tolerance to anoxia. In:Mechanisms of adaptation and control, CRC Press, Boca Raton, pp. 53–64.Google Scholar
  18. Monk L.S., Brändle R. &Crawford R.M.M. (1987): Catalase activity and post-anoxic injury in monocotyledonous species.J. Exp. Bot. 38: 233–246.CrossRefGoogle Scholar
  19. Perata P. &Alpi A. (1993): Plant responses to anaerobiosisPl. Sci. 93: 1–17.CrossRefGoogle Scholar
  20. Pezeshki S.R., Pan S.Z., Delaune R.D. &Patrick W.H. (1988): Sulfide-induced toxicity: Inhibition of carbon assimilation inSpartina alternifolia.Photosynthetica 22: 437–442.Google Scholar
  21. Pfister-Sieber M. &Brändle R. (1994): Aspects of plant behaviour under anoxia and postanoxia.Proc. Roy. Soc. Edinburgh, Ser. B, 102: 313–324.Google Scholar
  22. Pradet A. &Raymond P. (1983): Adenine nucleotide ratios and adenylate energy charge in energy metabolism.Annual Rev. Pl. Physiol. 34: 199–224.CrossRefGoogle Scholar
  23. Sakai H. &Thompson W. (1974): Comparisons of approximation to the percentile of t, χ2, and F distribution.J. Statist. Comp. Sim. 3: 81–93.CrossRefGoogle Scholar
  24. Schauenstein E., Esterbauer H. &Zollner H. (1977):Aldehydes in biological systems. Their natural occurrence and biological activities. Pion Ltd., London.Google Scholar
  25. Schröter C. (1908):Lebensgeschichte der Blutenpflanzen Mitteleuropas. Ulmer, Stuttgart.Google Scholar
  26. Sieber M. &Brändle R. (1991): Energy metabolism in rhizomes ofAcorus calamus (L.) and in the tubers ofSolanum tuberosum (L.) with regard to their anoxia tolerance.Bot. Acta 104: 279–282.Google Scholar
  27. Studer C. &Brändle R. (1984): Oxygen consumption and availability in the rhizomes ofAcorus calamus L.,Glyceria maxima (Hartmann) Holmberg,Menyanthes trifoliata L.,Phalaris arundinacea L.,Phragmites communis Trin. andTypha latifolia L.Bot Helv. 94: 23–31.Google Scholar
  28. Vanlerberghe G.C., Kenneth W.J. &Turpin D.H. (1991): Anaerobic metabolism in the N-limited algaSelenastrum minutum.Pl. Physiol. 95: 655–658.CrossRefGoogle Scholar
  29. Weber M. &Brändle R. (1994): Dynamics of nitrogen-rich compounds in roots, rhizomes, and leaves of the Sweet Flag (Acorus calamus L.) at its natural site.Flora 189: 63–68.Google Scholar
  30. Wulff H.D. (1941): Über die Ursache der Sterilität des Kalmus (Acorus calamus L.).Planta 31: 478–491.CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 1996

Authors and Affiliations

  • Michel Weber
    • 1
  • Roland Brändle
    • 1
  1. 1.Institute of Plant PhysiologyUniversity of BernBernSwitzerland

Personalised recommendations