Folia Geobotanica

, Volume 31, Issue 1, pp 25–36

Pressurised aeration in wetland macrophytes: Some theoretical aspects of humidity-induced convection and thermal transpiration

  • William Armstrong
  • Jean Armstrong
  • Peter M. Beckett


The pressurised gas-flows, humidity-induced convection (HIC) and thermal transpiration (TT), which are important for aeration and for greenhouse gas emissions in some wetland macrophytes, are described and discussed. Results obtained from simple mathematical modelling of the processes are presented to illustrate some of their more relevant features. It is emphasised that both processes require the presence of a micro-porous partition having a significantly greater resistance to pressure flow than to diffusion. In particular it is shown that whilst the potential to pressurise by these processes is inversely related to the pore diameters of the partition, the maximum gas flows are generated where pore diameters range from 0.1 to 0.2 μm. Where partitions are a surface feature (e.g. emergent macrophytes) a dominant role for HIC is predicted; where partitions are an embedded feature (e.g. water-lilies) it is deduced that HIC will still play a significant role, but the contribution of TT could be greater.


Diffusion Gas-transport Methane Oxygen Pressure-flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong J. (1992):Pathways and mechanisms of aeration in Phragmites australis. Ph.D. thesis, University of Hull, Hull.Google Scholar
  2. Armstrong J. &Armstrong W. (1990a): Light-enhanced convective through-flow increases oxygenation in rhizomes and rhizosphere ofPhragmites australis(Cav.) Trin. exSteud.New Phytol. 114: 121–128.CrossRefGoogle Scholar
  3. Armstrong J. &Armstrong W. (1990b): Pathways and mechanisms of oxygen transport inPhragmites australis. In:Cooper P. &Findlater B.C. (eds.),The use of constructed wetlands in water pollution control, Pergamon Press, Oxford, pp. 529–533.Google Scholar
  4. Armstrong J. &Armstrong W. (1991): A convective gas through-flow inPhragmites australis.Aquatic Bot. 39: 75–88.CrossRefGoogle Scholar
  5. Armstrong J. &Armstrong W. (1994): A physical model involving Nuclepore membranes to investigate the mechanism of humidity-induced convection inPhragmites australis.Proc. Roy. Soc. Edinburgh, Ser. B, 102: 529–540.Google Scholar
  6. Armstrong J. &Armstrong W. (1995). Phytotoxins, callus development and impeded gas-flow: critical links inPhragmites die-back. In:van der Putten W.H. (ed.),Reed News 4, Final Reports of EU Project EUREED-EV5V-CT920083, Netherlands Institute of Ecology, Heteren, pp. 76–114.Google Scholar
  7. Armstrong J., Armstrong W. &Beckett P.M. (1988):Phragmites australis—A critical appraisal of the ventilating pressure concept and an analysis of resistance to pressurised gas-flow and gaseous diffusion in horizontal rhizomes.New Phytol. 110: 383–390.CrossRefGoogle Scholar
  8. Armstrong J., Armstrong W. &Beckett P.M. (1992):Phragmites australis. Venturi- and humidity-induced convections enhance rhizome aeration and rhizosphere oxidation.New Phytol. 120: 197–207.CrossRefGoogle Scholar
  9. Armstrong W. (1979): Aeration in higher plants (review).Advances Bot. Res. 7: 225–332.CrossRefGoogle Scholar
  10. Armstrong W., Armstrong J., Beckett P.M. &Justin S.H.F.W. (1991): Convective gas-flows in wetland plant aeration. In:Jackson M.B., Davies D.D. &Lambers H. (eds.),Plant life under oxygen stress, SPB Academic Publishing bv, The Hague, pp. 283–302.Google Scholar
  11. Armstrong W., Brändle R. &Jackson M.B. (1994): Mechanisms of flood tolerance in plants.Acta Bot. Neerl. 43: 1–52.Google Scholar
  12. Bendix M., Tornbjerg T. &Brix H. (1994): Internal gas transport inTypha latifolia L. andTypha angustifolia L. I. Humidity-induced pressurization and convective throughflow.Aquatic Bot. 49: 75–90.CrossRefGoogle Scholar
  13. Brix H., Sorrell B.K. &Orr P.T. (1992): Internal pressurization and convective gas flow in some emergent freshwater macrophytes.Limnol. & Oceanogr. 37: 1420–1433.CrossRefGoogle Scholar
  14. Dacey J.W.A. (1981): Pressurized ventilation in the yellow water lily.Ecology 62: 1137–1147.CrossRefGoogle Scholar
  15. Dacey J.W.A. (1987). Knudsen-transitional flow and gas pressurization in leaves ofNelumbo.Pl. Physiol. 85: 199–203.Google Scholar
  16. Dacey J.W.H. &Klug M.J. (1979): Methane efflux from lake sediments through water lilies.Science 203: 1253–1255.PubMedCrossRefGoogle Scholar
  17. Grosse W., Büchel H.B. &Tiebel H. (1991): Pressurized ventilation in wetland plants.Aquatic Bot. 39: 89–98.CrossRefGoogle Scholar
  18. Kohl J.G., Henze R. & Kuhl H. (1996): Evaluation of the ventilation efficiency of the rhizomes of natural reed beds by convective through-flow of gases inPhragmites australis(Cav.) Trin. exSteudel.Aquatic Bot. (in press).Google Scholar
  19. Leuning R. (1983): Transport of gases into leaves.Pl. Cell Environm. 6: 181–194.Google Scholar
  20. Mevi-Schutz J. &Grosse W. (1988): A two-way gas transport system inNelumbo nucifera.Pl. Cell Environm. 11: 27–34.CrossRefGoogle Scholar
  21. Schröder P., Grosse W. &Woermann D. (1986): Localisation of thermo-osmotically active partitions in young leaves ofNuphar lutea.J. Exp. Bot. 37: 1450–1461.CrossRefGoogle Scholar
  22. Sorrell B.K. &Boon P.I. (1994): Convective gas-flow inEleocharis sphacelata R.Br.: methane transport and release from wetlands.Aquatic Bot. 47: 197–212.CrossRefGoogle Scholar
  23. Takaishi T. &Sensui Y. (1963): Thermal transpiration effect of hydrogen, rare gases and methane.Trans. Faraday Soc. 59: 2503–2514.CrossRefGoogle Scholar
  24. Tornbjerg T., Bendix M. &Brix H. (1994): Internal gas transport inTypha latifolia L. andTypha angustifolia L. II. Convective throughflows and ecological significance.Aquatic Bot. 49: 91–106.CrossRefGoogle Scholar
  25. Whiting G.J. &Chanton J.P. (1993): Primary production control of methane emission from wetlands.Nature 364: 794–795.CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 1996

Authors and Affiliations

  • William Armstrong
    • 1
  • Jean Armstrong
    • 1
  • Peter M. Beckett
    • 2
  1. 1.Department of Applied BiologyUniversity of HullHullUK
  2. 2.Department of Applied MathematicsUniversity of HullHullUK

Personalised recommendations