Estuaries

, Volume 27, Issue 1, pp 112–119 | Cite as

Viruses as potential regulators of regional brown tide blooms caused by the alga,Aureococcus anophagefferens

  • Mary Downes Gastrich
  • Justine A. Leigh-Bell
  • Christopher J. Gobler
  • O. Roger Anderson
  • Steven W. Wilhelm
  • Martha Bryan
Article

Abstract

Blooms of the brown tide organismAureccoccus anophagefferens have recurred in the coastal bays in New Jersey since 1995 and in the coastal bays of Long Island since 1985. Intracellular viral-like particles (VLPs) were documented during 1999–2000 brown tide blooms in Little Egg Harbor, New Jersey, but it was not determined whether cells were infected during the termination of the bloom. The objective of this study was to determine if VLPs infected and lysed natural populations ofA. anophagefferens in coastal bays of New Jersey and New York in 2002 with the same frequency as in 1999–2000 and especially at the termination of the bloom. Our results confirmed that the highest percentage (37.5%) of VLP-infected cells occurred at the termination of the brown tide bloom in New Jersey in 2002. Intracellular VLPs were present throughout the bloom event. The percentage of visibly infected cells was higher at the beginning of the bloom than during the peak of the bloom. The intracellular VLPs in natural populations ofA. anophagefferens were consistent in size and shape (approximately 140 nm in diameter) and comparable to those in previous studies. Concentrated viral isolates, prepared from waters during brown tide blooms in New York and New Jersey in 2002, infected healthy laboratoryA. anophagefferens cultures in vitro. The viral isolates associated with the highest laboratory viral activity (lysis positive) were concentrated from water samples having the highest viral and bacteria concentrations. The intracellular viruses in these virally infected laboratory cultures ofA. anophagefferens were similar in size and shape to those found in natural populations. The successful isolation of a virus specific toA. anophagefferens from a brown tide bloom in the field, the similarity of ultrastructure of VLPs infecting both natural populations and laboratory infected cultures, and the pattern of VLP infection during bloom activity in combination with the observed high percentage of VLP-infected cells during bloom termination, supports, the hypothesis that viruses may be a major source of mortality for brown tide blooms in regional coastal bays of New Jersey and New York.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderson, D. M., D. M. Kulis, andE. M. Cosper. 1989. Immunofluorescent detection of the brown tide organism,A. anophagefferens, p. 213–228.In E. M. Cosper, E. J. Carpenter, and V. M. Bricelj (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Springer-Verlag, Berlin, Germany.Google Scholar
  2. Benmayor, S. S. 1996. Environmental conditions influencing viral-algal interactions in the picoplankter,Aureococcus anophagefferens. M.S. Thesis, State University of New York, Stony Brook, New York.Google Scholar
  3. Berges, J. A., D. J. Franklin, andP. J. Harrison. 2001. Evolution of an artificial seawater medium: Improvement in enriched seawater, artificial water over the last two decades.Journal of Phycology 37:1138–1145.CrossRefGoogle Scholar
  4. Bratbak, G., J. K. Egge, andM. Heldal. 1993. Viral mortality of the marine algaEmiliania huxleyi (Haptophyceae) and termination of algal blooms.Marine Ecology Progress Series 93:39–48.CrossRefGoogle Scholar
  5. Bricelj, V. M., S. P. MacQuarrie, andR. A. Schaffner. 2001. Differential effects ofAureococcus anophagefferens isolates (“brown tide”) in unialgal and mixed suspensions on bivalve feeding.Marine Biology 39:605–615.Google Scholar
  6. Caron, D. A., E. L. Lim, H. Kunze, E. M. Cosper, andD. M. Anderson. 1989. Trophic interactions between nano- and microzooplankton and the brown tide, p. 263–294.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Springer-Verlag, Berlin, Germany.Google Scholar
  7. Caron, D.A., E. L. Lim, G. Miceli, J. B. Waterbury, andF. W. Valois. 1991. Grazing and utlization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community.Marine Ecology Progress Series 76:205–217.CrossRefGoogle Scholar
  8. Caron, D. A., M. R. Dennett, D. M. Moran, R. A. Schaffner, D. J. Lonsdale, C. J. Gobler, R. Nuzzi, andT. I. McLean. 2003. Development and application of a monoclonal antibody technique countingAureococcus anophagefferens, an algal causing recurrent brown tides in the Mid-Atlantic United States.Applied and Environmental Microbiology 69:5492–5502.CrossRefGoogle Scholar
  9. Cochlan, W. P., J. Wikner, G. F. Steward, D. C. Smith, andF. Azam. 1993. Spatial-distributions of viruses, bacteria, and chlorophylla in neritic, oceanic, and estuarine environments.Marine Ecology Progress Series 92:77–87.CrossRefGoogle Scholar
  10. Cottrell, M. T. andC. A. Suttle. 1995. Dynamics of a lytic virus infecting the marine picoflagellateMicromonas pusilla Limnology and Oceanography 40:730–739.Google Scholar
  11. Fuhrman, J. A. 1999. Marine viruses and their biogeochemical and ecological effects.Nuture 399:541–548.CrossRefGoogle Scholar
  12. Garry, R. T., P. Hearing, andE. M. Cosper. 1998. Characterization of a lytic virus infectious to the bloom-forming microalgaAureococcus anophagefferens (Pelagophyceae).Phycologia 37 300–306.CrossRefGoogle Scholar
  13. Gastrich, M. D., R. Lathrop, S. Haag, M. P. Weinstein, M. Danko, D. A. Caron, and R. Schaffner. In press. Assessment of brown tide blooms, caused byAureococcus anophagefferens and contributing factors in New Jersey coastal bays: 2000–2002.Harmful Algae.Google Scholar
  14. Gastrich, M. D., O. R. Anderson, S. S. Benmayor, andE. M. Cosper. 1998. Ultrastructural analysis of viral infection in the brown-tide alga,Aureococcus anophagefferens (Pelagophyceae).Phycologia 37:300–306.CrossRefGoogle Scholar
  15. Gastrich, M. D., O. R. Anderson, andE. Cosper. 2002. Virallike particles (VLPs) in the alga,Aureococcus anophagefferens, (pelagophyceae) during 1999–2000 brown tide blooms in Little Egg Harbor, New Jersey.Estuaries 25:938–943.CrossRefGoogle Scholar
  16. Gastrich, M. D. andC. E. Wazniak. 2002. A brown tide bloom index based on the potential harmful effects of the brown tide alga,Aureococcus anophagefferens.Aquatic Ecosystem Health and Management 5:1–7.CrossRefGoogle Scholar
  17. Gobler, C. J., D. A. Hutchins, N. S. Fisher, E. M. Cosper, andS. A. Sanudo-Wilhelmy. 1997. Release and biovailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte.Limnology and Oceanography 42:1492–1504.Google Scholar
  18. Gobler, C. J., M. J. Renaghan, andN. J. Buck. 2002. Impacts of nutrients and grazing mortality on the abundance ofAureococcus anophagefferens during a New York brown tide bloom.Limnology and Oceanography 47:129–141.CrossRefGoogle Scholar
  19. Gobler, C. J. andS. A. Sanudo-Wilhelmy. 2001. Effects of organic carbon, organic nitrogen, inorganic nutrients, and iron additions on the growth of phytoplankton and bacteria during a brown tide bloom.Marine Ecology Progress Series 209:19–34.CrossRefGoogle Scholar
  20. Hobbie, J. E., R. J. Daley, andS. Jasper. 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy.Applied and Environmental Microbiology 33:1225–1228.Google Scholar
  21. Kirchman, D. L., H. W. Ducklow, J. J. McCarthy, andC. Garside. 1994. Biomass and nitrogen uptake by heterotrophic bacteria during the spring phytoplankton bloom in the North Atlantic Ocean.Deep-Sea Research 41:879–895.CrossRefGoogle Scholar
  22. Mehran, R. 1996. Effects ofA. anophagefferens on microzooplankton grazing and growth rates in the Peconic Bays system, Long Island, New York. Master's Thesis, SUNY, Stony Brook, New York.Google Scholar
  23. Milligan, K. L. D. andE. M. Cosper. 1994. Isolation of virus capable of lysing the “brown tide” microalga.Aureococcus anophagefferens.Science 266:805–807.CrossRefGoogle Scholar
  24. Mulholland, M. R., C. J. Gobler, andC. Lee. 2002. Peptide hydrolysis, amino acid oxidation and N uptake in communities seasonally dominated byAureococcus anophagefferens.Limnology and Oceanography 47:1094–1108.Google Scholar
  25. Nagasaki, K., M. Ando, S. Itakur, I. Imai, andY. Ishida. 1994. Viral mortality in the final stage ofHeterosigma ahashiwo (Raphidophyceae) red tide.Journal of Plankton Research 16:1595–1599.CrossRefGoogle Scholar
  26. New Jersey Department of Environmental Protection (NJDEP). 2001. Annual report of phytoplankton blooms and related conditions in the New Jersey Coastal Waters: Summer of 2001. Bureau of Marine Water Classification, Leeds Point, New Jersey.Google Scholar
  27. Noble, R. T. andJ. A. Fuhrman. 1998. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria.Aquatic Microbial Ecology 14:113–118.CrossRefGoogle Scholar
  28. Sherr, B. F., E. B. Sherr, T. L. Andrew, R. D. Fallon, andS. Y. Newell. 1986. Trophic interactions between heterotrophic protozoa and bacterioplankton in estuarine waters analyzed with selective metabolic inhibitors.Marine Ecology Progress Series 32:169–179.CrossRefGoogle Scholar
  29. Sierurth, J. M., P. W. Johnson, andP. E. Hargraves. 1988. Ultrastructure and ecology ofAureococcus anophagefferens genera et species nova (Chrysophyceae): The dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, summer 1985.Journal of Phycology 24:416–425.CrossRefGoogle Scholar
  30. Sieracki, M. E., M. D. Keller, T. L. Cucci, andE. Their. 1999. Plankton community ecology during the bloom initiation period of the brown tide organismAureococcus anophagefferens in coastal embayments of Long island, N.YEOS 80:285.Google Scholar
  31. Suttle, C. A. 1993. Enumeration and isolation of viruses, p. 121–134.In P.F. Kemp, B. F. Sherr, E. B. Sherr, and J.J. Coli (eds.), Handbook of Methods in Aquatic Microbial Ecology. Lewis, Boca Raton, Florida.Google Scholar
  32. Wheeler, P. W. andD. L. Kirchman. 1986. Utilization of inorganic and organic nitrogen by bacteria in marine systems.Limnology and Oceanography 31:998–1009.CrossRefGoogle Scholar
  33. Wilhelm, S. W. andC. A. Suttle. 1999. Viruses and nutrient cycles in the sea.BioScience 49:781–788.CrossRefGoogle Scholar
  34. Wilhelm, S. W., M. G. Weinbauer, C. A. Suttle, R. J. Pledger, andD. L. Mitchell. 1998. Measurements of DNA damage and photoreactivation imply that most viruses in marine surface waters are infective.Aquatic Microbial Ecology 14:215–222.CrossRefGoogle Scholar
  35. Wommack, K. E. andR. R. Colwell. 2000. Virioplankton: Viruses in aquatic ecosystems.Microbiology and Molecular Biology Reviews 64:69–114.CrossRefGoogle Scholar
  36. Zingone, A., D. Sarno, andG. Forlani. 1999. Seasonal dynamics in the abundance ofMicromonas pusilla (Prasinophyceae) and its viruses in the Gulf of Naples (Mediterranean Sea).Journal of Plankton Research 121:2143–2159.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2004

Authors and Affiliations

  • Mary Downes Gastrich
    • 1
    • 2
  • Justine A. Leigh-Bell
    • 3
  • Christopher J. Gobler
    • 4
  • O. Roger Anderson
    • 1
  • Steven W. Wilhelm
    • 3
  • Martha Bryan
    • 1
  1. 1.Lamont-Doherty Earth Observatory of Columbia UniversityPalisades
  2. 2.Division of Science, Research and TechnologyNew Jersey Department of Environmental ProtectionTrenton
  3. 3.Department of Microbiology and The Center for Environmental BiotechnologyThe University of TennesseeKnoxville
  4. 4.Natural Science DivisionSouthampton College of Long Island UniversitySouthampton

Personalised recommendations