, Volume 27, Issue 1, pp 70–81 | Cite as

Controls on salt marsh accretion: A test in salt marshes of Eastern Canada



We used137Cs-dating to determine vertical accretion rates of 15 salt marshes on the Bay of Fundy, the Gulf of St. Lawrence, and the Atlantic coast of Nova Scotia. Accretion rates are compared to a number of factors assumed to influence vertical marsh accretion: rates of relative sea-level rise, climatic parameters (average daily temperatures and degree days) and latitude (related to insolation and day length), sediment characteristics (organic matter inventory, bulk, mineral, and organic matter density), distance of the core site from the nearest source of tidal waters, and the tidal range. Uniques to our study is a consideration of climatic parameters and latitude, which should influence organic matter production, and thus vertical accretion rates. Significant predictors of accretion rates (in order of importance) were found to be organic matter inventory, distance from a creek, and range of mean tides. Contrary to conclusions from previous studies, we found that accretion rates decreased with increasing tidal range, probably because we considered a wider span of tidal ranges, from micro- to macrotidal. Although four marshes with low organic matter inventories also show a deficit in accretion with respect to relative sea-level rise, organic matter is not limiting in two-thirds of the marshes studied, despite shorter growing seasons.

Literature Cited

  1. Anisfeld, S. C., M. J. Tobin, andG. Benoit. 1999. Sedimentation rates in flow-restricted and restored salt marshes in Long Island Sound.Estuaries 22:231–244.CrossRefGoogle Scholar
  2. Baumann R. H., J. W. Day, andC. A. Miller. 1984. Mississippi deltaic wetland survival: Sedimentation versus coastal submergence.Science 224:1093–1095.CrossRefGoogle Scholar
  3. Bricker-Urso, S., S. W. Nixon, J. K. Cochran, D. J. Hirschberg, andC. Hunt. 1989. Accretion rates and sediment accumulation in Rhode Island salt marshes.Estuaries 12:300–317.CrossRefGoogle Scholar
  4. Cahoon, D. R., D. J. Reed, andJ. W., Day, Jr. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited.Marine Geology 128:1–9.CrossRefGoogle Scholar
  5. Callaway, J. C., R. D. DeLaune, andW. H. Patrick, Jr. 1997. Sediment accretion rates from four coastal wetlands along the Gulf of Mexico.Journal of Coastal Research 13:181–191.Google Scholar
  6. Canadian Hydrographic Survey. 2000a. Canadian Tide and Current Tables, Volume 1, Atlantic Coast and Bays of Fundy. Fisheries and Oceans Canada, Sidney, British Columbia, Canada.Google Scholar
  7. Canadian Hydrographic Survey. 2000b. Canadian Tide and Current Tables, Volume 2, Gulf of St. Lawrence. Fisheries and Oceans Canada, Sidney, British Columbia, Canada.Google Scholar
  8. Carrera, G., P. Vanicek, andM. R. Craymer. 1990. The compilation of a map of recent vertical crustal movements in Canada. DSS Research Contract 50SS.23244-7-4257. Department of Supply and Services, Ottawa, Canada.Google Scholar
  9. Chmura, G. I. 2003. Salt marshes and mangrove swamps.In F. I. Isla (ed.), Coastal Zone and Estuaries. Encyclopedia of Life Support Systems (EOLSS). EOLSS Publisher, Oxford, U.K.Google Scholar
  10. Chmura, G. L., C. B. Beecher, L. L. Helmer, andE. M. Sunderland. 2001a. Historical rates of salt marsh sediment accumulation in the outer Bay of Fundys.Canadian Journal of Earth Science 38:1081–1092.CrossRefGoogle Scholar
  11. Chmura, G. L., P. Chase, andJ. Bercovittch. 1997. Climatic control on the middle marsh zone in Fundy saltmarshes.Estuaries 20:689–699.CrossRefGoogle Scholar
  12. Chmura, G. L., A. Coffey, andR. Crago. 2001b. Variation in surface sediment deposition on salt marshes on the Bay of Fundy.Journal of Coastal Research 17:221–227.Google Scholar
  13. Church, J. A., J. M. Gregory, P. Huybrechts, M. Kuhn, K. Lambeck, M. T., Nhuan, D. Qin, andP. L. Woodworth. 2001. Changes in sea level, p. 638–689.In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.Google Scholar
  14. Connor, R. F. andG. L. Chmura. 2000. Dynamics of above-and belowground organic matter in a high latitude macrotidal saltmarsh.Marine Ecology Progress Series 204:101–110.CrossRefGoogle Scholar
  15. Connor, R. F., G. L. Chmura, andC. B. Beecher. 2001. Carbon accumulation in Bay of Fundy salt marshes: Implications for restoration of reclaimed marshes.Global Biogeochemical Cycles 15:943–954.CrossRefGoogle Scholar
  16. Craft, C. B., E. D. Seneca, andS. W. Broome. 1993. Vertical accretion in microtidal regularly and irregularly flooded estuarine marshes.Estuarine, Coastal and Shelf Science 37:371–386.CrossRefGoogle Scholar
  17. Davies, J. L.. 1964. A morphogenic approach to world shore-lines.Zeitschrift für Geomorphologie 8:27–42.Google Scholar
  18. Day, Jr.,J. W., L. D. Britsch, S. R. Hawes, G. P. Shaffer, D. J. Reed, andD. Cahoon. 2000. Pattern and process of land loss in the Mississippi Delta: A spatial and temporal analysis of wetland habitat change.Estuaries 23:425–438.CrossRefGoogle Scholar
  19. DeLaune, R. D., W. H. Patrick, Jr., andR. J. Buresh. 1978. Sedimentation rates determined by137Cs dating in a rapidly accretion salt marsh.Nature 275:532–533.CrossRefGoogle Scholar
  20. Forrester, W. D. 1983. Canadian Tide Manual. Department of Fisheries and Oceans, Canadian Hydrographic Service, Ottawa, Ontario, Canada.Google Scholar
  21. French, J. R. andT. Spencer. 1993. Dynamics of sedimentation in a tide-dominated backbarrier salt-marsh, Norfolk, U.K.Marine Geology 110:315–331.CrossRefGoogle Scholar
  22. Hargis, T. G. andR. R. Twilley. 1994. Improved coring device for measuring soil bulk density in a Louisiana deltaic marsh.Journal of Sedimentary Research A64:681–683.Google Scholar
  23. Harvey, J. W., P. F. Germann, andW. E. Odum. 1983. Geomorphological control of subsurface hydrology in the creekbank zone of tidal marshes.Estuarine, Coastal and Shelf Science 258:677–691.Google Scholar
  24. Hatton, R. S., R. D. DeLaune, andW. H. Patrick, Jr. 1983. Sedimentation, accretion and subsidence in marshes of Barataria Basin, Louisiana.Limnology and Oceanography 28:494–502.CrossRefGoogle Scholar
  25. Lyles, S. D., L. E. Hickman, Jr., andH. A. Debaugh, Jr. 1988. Sea level variations for the United States, 1855–1986. National Ocean Service, Office of Oceanography and Marine Assessment, National Oceanic and Atmospheric Administration, Rockville, Maryland.Google Scholar
  26. McCaffrey, R. J., andJ. Thomson. 1980. A record of sediment and trace metals in a Connecticut salt marsh, p. 165–236.In B. Saltzman (ed.), Advances in Geophysics, Estuarine Physics and Chemistry: Studies in Long Island Sound Volume 22. Academic Press, New York.Google Scholar
  27. Merriwether, J. R., N. Beck, D. F. Keeley, M. P. Langley, R. H. Thompson, andJ. C. Young. 1988. Radionuclides in Louisiana soils.Journal of Environmental Quality 17:562–568.CrossRefGoogle Scholar
  28. Meteorological Service of Canada. 1937. Monthly record of meteorological observations in Canada and Newfoundland January, 1936. Dominion of Canada Department of Marine, Ottawa, Canada.Google Scholar
  29. Mitsch, W. J. andJ. G. Gosselink. 2000. Wetlands, 3rd edition. John Wiley and Sons, Inc., New York.Google Scholar
  30. Nyman, J. A., M. Carloss, R. D. DeLaune, andW. H. Patrick, Jr. 1994. Erosion rather than plant dieback as the mechanism of marsh loss in an estuarine marsh.Earth Surface Processes and Landforms 19:69–84.CrossRefGoogle Scholar
  31. Nyman, J. A., R. D. DeLaune, H. H. Roberts, andW. H. Patrick, Jr. 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh.Marine Ecology Progress Series 96:269–279.CrossRefGoogle Scholar
  32. Orson, R. A., R. S. Warren, andW. A. Niering. 1998. Interpreting sea level rise and rates of vertical marsh accretion in a southern New England tidal salt marsh.Estuarine, Coastal and Shelf Science 47:419–429.CrossRefGoogle Scholar
  33. Pennington, W., R. S. Cambray, andE. M. Fisher. 1973. Observations on lake sediments using fallout137Cs as a tracer.Nature 242:324–326.CrossRefGoogle Scholar
  34. Reed, D. J. 1990. The impact of sea-level rise on coastal salt marshes.Progress in Physical Geography 14:465–481.CrossRefGoogle Scholar
  35. Reed, D. J., T. Spencer, A. L. Murray, J. R. French, andL. Leonard. 1999. Marsh surface sediment deposition and the role of tidal creeks: Implications for created and managed coastal marshes.Journal of Coastal Conservation 5:81–90.Google Scholar
  36. Roman, C. T., J. A. Peck, J. R. Allen, J. W. King, andP. G. Appleby. 1997. Accretion of a New England (U.S.A.) salt marsh in response to inlet migration, storms, and sea level rise.Estuarine, Coastal and Shelf Science 45:717–727.CrossRefGoogle Scholar
  37. Shaw, J. andD. L. Forbes. 1990. Short- and long-term relative sea level trends in Atlantic Canada, p. 291–305.In M. H. Davies (ed.), Proceedings, Canadian Coastal Conference, Kingston Ontario. National Research Council, Ottawa, Canada.Google Scholar
  38. Stevenson, J. C., L. G. Ward, andM. S. Kearney. 1986. Vertical accretion in marshes with varying rates of sea level rise, p. 241–259.In D. A. Wolfe (ed.), Estuarine Variability. Academic Press, Orlando, Florida.Google Scholar
  39. Stoddart, D. R., D. J. Reed, andJ. R. French. 1989. Understanding salt marsh accretion, Scolt Head Island, Norfolk, England.Estuaries 12:228–236.CrossRefGoogle Scholar
  40. Stumpf, R. P. 1983. The process of sedimentation on the surface of a salt marsh.Estuarine, Coastal and Shelf Science 17:495–508.CrossRefGoogle Scholar
  41. Turner, R. E. 1976. Geographic variations in salt marsh macrophyte production: A review.Contributions in Marine Science 20:48–68.Google Scholar
  42. Turner, R. E. 1990. Landscape development and coastal wetland losses in the Northern Gulf of Mexico.American Zoologist 30:89–105.Google Scholar
  43. Turner, R. E., E. M. Swenson, andC. S. Milan. 2000. Organic and inorganic contributions to vertical accretion in salt marsh sediments, p. 583–593.In M. P. Weinstein and D. A. Dreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology, Kluwer Academic Publishers, Boston, Massachusetts.Google Scholar
  44. van Proosdij, D., J. Ollerhead, andG. D. Davidson-Arnott. 2000. Controls on suspended sediment deposition over single tidal cycles in a macrotidal saltmarsh, Bay of Fundy, Canada, p. 43–57.In K. Pye and J. R. L. Allen (eds.), Coastal and Estuarine Environments: Sedimentology, Geomorphology and Geoarchaeology. Special Publications 175. Geological Society, London, U.K.Google Scholar
  45. Wood, M. E., J. T. Kelley, andD. F. Belknap. 1989. Patterns of sediment accumulation in the tidal marshes of Maine.Estuaries 12:237–246.CrossRefGoogle Scholar

Sources of Unpublished Materials

  1. Marine Environmental Data Services. Unpublished Data. 12W082-200 Kent Street, Ottawa, Ontario Canada K1A 036.Google Scholar
  2. Meteorological Service of Canada. 2002. Canadian Climate Normals 1971–2000. Scholar
  3. O'Neill, Charles. Personal Communication. Canadian Hydrographic Service, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, Nova Scotia B2Y 4A2, Canada.Google Scholar
  4. Pelletier J. and G. L. Chmura. Saltmarsh Accretion and Sea Level Change in North America. 2001 Canadian Association of Geographers Annual Meeting, Montreal, Canada.Google Scholar

Copyright information

© Estuarine Research Federation 2004

Authors and Affiliations

  1. 1.Department of Geography (and Centre for Climate and Global Change Research)McGill UniversityMontrealCanada

Personalised recommendations