Estuaries

, Volume 27, Issue 3, pp 363–377 | Cite as

Habitat requirements for submerged aquatic vegetation in Chesapeake Bay: Water quality, light regime, and physical-chemical factors

  • W. Michael Kemp
  • Richard Batleson
  • Peter Bergstrom
  • Virginia Carter
  • Charles L. Gallegos
  • William Hunley
  • Lee Karrh
  • Evamaria W. Koch
  • Jurate M. Landwehr
  • Kenneth A. Moore
  • Laura Murray
  • Michael Naylor
  • Nancy B. Rybicki
  • J. Court Stevenson
  • David J. Wilcox
Article

Abstract

We developed an algorithm for calculating habitat suitability for seagrasses and related submerged aquatic vegetation (SAV) at coastal sites where monitoring data are available for five water quality variables that govern light availability at the leaf surface. We developed independent estimates of the minimum light required for SAV survival both as a percentage of surface light passing though the water column to the depth of SAV growth (PLWmin) and as a percentage of light reaching reaching leaves through the epiphyte layer (PLLmin). Value were computed by applying, as inputs to this algorithm, statistically dervived values for water quality variables that correspond to thresholds for SAV presence in Chesapeake Bay. These estimates ofPLWmin andPLLmin compared well with the values established from a literature review. Calcultations account for tidal range, and total light attenuation is partitioned into water column and epiphyte contributions. Water column attenuation is further partitioned into effects of chlorophylla (chla), total suspended solids (TSS) and other substances. We used this algorithm to predict potential SAV presence throughout the Bay where calculated light available at plant leaves exceededPLLmin. Predictions closely matched results of aerial photographic monitoring surveys of SAV distribution. Correspondence between predictions and observations was particularly strong in the mesohaline and polythaline regions, which contain 75–80% of all potential SAV sites in this estuary. The method also allows for independent assessment of effects of physical and chemical factors other than light in limiting SAV growth and survival. Although this algorithm was developed with data from Chesapeake Bay, its general structure allows it to be calibrated and used as a quantitative tool for applying water quality data to define suitability of specific sites as habitats for SAV survival in diverse coastal environments worldwide.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abal, E. andW. C. Dennison. 1996. Seagrass depth range and water quality in southern Moreton Bay, Queensland.Australian Journal of Marine and Freshwater Research 47:763–771.CrossRefGoogle Scholar
  2. Barko, J. W. andM. Smart. 1986. Sediment-related mechanisms of growth limitation in submersed macrophytes.Ecology 67: 1382–1340.CrossRefGoogle Scholar
  3. Bartleson, R. D. 1988. The relative influence of current reduction by seagrasses on sediment nutrients and seagrass growth in high and low nutrient waters: A simulation model and field observations. M.S. Thesis, University of Florida, Gainesville, Florida.Google Scholar
  4. Batiuk, R., P. Bergstrom, M. Kemp, E. Koch, L. Murray, C. Stevenson, R. Bartleson, V. Carter, N. Rybicki, J. Landwehr, C. Gallegos, L. Karrh, M. Naylor, D. Wilcox, K. Moore, S. Ailstock, andM. Teichberg. 2000. Chesapeake Bay submerged aquatic vegetation water quality and habitat-based requirements and restoration targets: A second technical synthesis. CBP/TRS 245/00. EPA 903-R-00-014. U.S. EPA, Chesapeake Bay Program, Annapolis, Maryland.Google Scholar
  5. Batiuk, R., R. Orth, K. Moore, J. C. Stevenson, W. Dennison, L. Staver, V. Carter, N. Rybicki, R. Hickman, S. Kollar, andS. Bieber. 1992. Submerged aquatic vegetation habitat requirements and restoration targets: A technical synthesis. U.S. EPA, Chesapeake Bay Program, Annapolis, Maryland.Google Scholar
  6. Bergstrom, P. 2000. Setting, applying and evaluating minmum light requirements for Chesapeake Bay SAV, p. 95–120.In R. Batiuk, R. Orth, K. Moore, J. C. Stevenson, W. Dennison, L. Staver, V. Carter, N. Rybicki, R. Hickman S. Kollar, and S. Bieber (eds.), Chesapeake Bay Submerged Aquatic Vegetation Water Quality and Habitat-Based Requirements and Restoration Targets: A Second Technical Synthesis. CBP/TRS 245/00. EPA 903-R-00-014. U.S. EPA, Chesapeake Bay Program, Annapolis, Maryland.Google Scholar
  7. Borum, J. 1985. Development of epiphytic communities on eelgrass (Zostera marina) along a nutrient gradient in a Danish estuary.Marine Biology 87:211–218.CrossRefGoogle Scholar
  8. Bulthuis, D. A. andW. J. Woelkerling. 1983. Biomass accumulation and shading effects of epiphytes on leaves of the seagrass,Heterozostera tasmanica, in Victoria, Australia.Aquatic Botany 16:137–148.CrossRefGoogle Scholar
  9. Burd, A. B. andK. H. Dunton. 2001. Field verification of a light-driven model of biomass changes in the seagrassHalodule wrightii.Marine Ecology Progress Series 209:85–98.CrossRefGoogle Scholar
  10. Burrell, D. C. andJ. R. Schubel. 1977. Seagrass ecosystem oceanography, p. 196–232.In C. P. McRoy and C. Helfferich, (eds.), Seagrass Ecosystems: A Scientific Perspective. Marcel Dekker, Inc., New York.Google Scholar
  11. Buzzelli, C. P. R. L. Wetzel, andM. B. Myers 1998. Dynamic simulation of littoral zone habitats in lower Chesapeake Bay. II. Seagrass habitat primary production and water quality relationships.Estuaries 21:673–689.CrossRefGoogle Scholar
  12. Caffrey, J. andW. M. Kemp. 1990. Nitrogen cycling in sediments with estuarine populations ofPotamogeton perfoliatus andZostera marina.Marine Ecology Progress Series 66:147–160.CrossRefGoogle Scholar
  13. Cambridge, M. L. andA. J. McComb. 1984. The loss of seagrasses in Cockburn Sound, Western Australia. I. The time course and magnitude of seagrass decline in relation to industrial development.Aquatic Botany 20:229–243.CrossRefGoogle Scholar
  14. Canfleld, Jr.,E. D., K. A. Langeland, S. B. Linda, andW. T. Haller. 1985. Relations between water transparency and maximum depth of macrophyte colonization in lakes.Journal of Aquatic Plant Management 23:25–28.Google Scholar
  15. Carlson, P. R., L. Yarbro, andT. Barber. 1994. Relationship of sediment sulfide to mortality ofThalassia testudinum in Florida Bay.Bulletin of Marine Science 54:733–746.Google Scholar
  16. Carter, V., J. E. Paschal, andN. Bartow. 1985. Distribution and abundance of submerged aquatic vegetation in the tidal Potomac River and estuary, Maryland and Virginia, May 1978 to November 1981—A water quality study of the tidal Potomac River and estuary. Water Supply Pap 223A. U.S. Geological Survey, Reston, Virginia.Google Scholar
  17. Carter, V., N. Rybicki, J. Landwehr, andM. Naylor. 2000. Light requirements for SAV survival and growth, p. 11–34.In R. Batiuk, R. Orth, K. Moore, J. C. Stevenson, W. Dennison, L. Staver, V. Carter, N. Rybiocki, R. Hickman, S. Bieber (eds.) Chesapeake Bay Submerged Aquatic Vegetation Water Quality and Habitat-Based Requirement and. Restoration Targets: A Second Technical Synthesis. CBP/TRS 245/00. EPA 903-R-00-014. U.S. EPA, Chesapeake Bay Longam. Annapolis, Maryland.Google Scholar
  18. Cerco, C. F. andK. A. Moore. 2001. System-wide submerged aquatic vegetation model for Chesapeake Bay.Estuaries, 24: 522–534.CrossRefGoogle Scholar
  19. Chambers, P. A. andJ. Kalff. 1985. Depth distribution and biomass of submersed aquatic macrophyte communities in relation to secchi depth.Canadian Journal of Fisheries and Aquatic Science 42:701–709.CrossRefGoogle Scholar
  20. Congdon, R. A. andA. J. McComb. 1979. Productivity ofRuppia: Seasonal changes and dependence on light in an Australian estuary.Aquatic Botany 6:121–132.CrossRefGoogle Scholar
  21. Czernv, A. B. andK. H. Dunton. 1995. The effects of in situ light reduction on the growth of two subtropical seagrases,Thalassia testudinum andHalodule wrightii.Estuaries 18:418–427.CrossRefGoogle Scholar
  22. Dan, A., A. Moriguchi, K. Mitsuhashi, andT. Terawaki. 1998. Relationship betweenZostera marina and bottom sediments, wave action offshore in Naruto, Southern Japan.Fisheries Engineering 34:229–204.Google Scholar
  23. de Jonge, V. N. andD. J. de Jong. 1992. Role of tide, light and fisheries in the decline ofZostera marina L. in the Dutch Wadden Sea.Netherlands Institute for Sea Research Publication 20:161–176.Google Scholar
  24. Dennison, W. C., R. J. Orth, K. A. Moore, J. C. Stevenson, V. Carter, S. Kollar, P. Bergstrom, andR. Batiuk. 1993. Assessing water quality with submersed aquatic vegetation. Habitat requirements as barometers of Chesapeake Bay health.Bioscience 43:86–94.CrossRefGoogle Scholar
  25. Dixon, L. K. 2000. Establishing light requirements for the seagrassThalassia testudinum: An example from Tampa Bay, Florida, p. 9–32.In S. A. Bortone (ed.) Seagrasses Monitoring, Ecology, Physiology and Management. CRC Press, Boca Raton, Florida.Google Scholar
  26. Duarte, C. M. 1991. Seagrass depth limits.Aquatic Botany 40: 363–377.CrossRefGoogle Scholar
  27. Duarte, C. M. andJ. Kalff. 1987. Latitudinal influences on the depths of maximum colonization and maximum biomass of submerged angiosperms in lakes.Canadian Journal Fisheries and Aquatic Sciences 44:1759–1764.CrossRefGoogle Scholar
  28. Dunton, K. H. 1996. Photosynthetic production and biomass of the subtropical seagrassHalodule wrightii along an estuarine gradient.Estuaries 19:436–447.CrossRefGoogle Scholar
  29. Edgar, G. J. andC. Shaw. 1995. The production and trophic ecology of shallow-water fish assemblages in southern Australia. III. General relationships between sediments, seagrasses, invertebrates and fishes.Journal of Experimental Marine Biology and Ecology 194:107–131.CrossRefGoogle Scholar
  30. Fong, P., M. E. Jacobsen, M. Mescher, D. Lirman, andM. C. Harwell 1997. Investigating the management potential of a seagrass model through sensitivity analysis and experiments.Ecological Applications 7:300–315.CrossRefGoogle Scholar
  31. Fonseca, M. S., J. S. Fisher, J. C. Zieman, andG. W. Thayer. 1982. Influence of the seagrassZostera marina on current flow.Estuarine, Coastal and Shelf Science 15:351–364.CrossRefGoogle Scholar
  32. Fonseca, M. S. andW. J. Kenworthy. 1987. Effects of current on photosynthesis and distribution of seagrasses.Aquatic Botany. 27:59–78.CrossRefGoogle Scholar
  33. Gallegos, C. L. 1994. Renning habitat requirements of submersed aquatic vegetation: Role of optical models.Estuaries 17:198–219.CrossRefGoogle Scholar
  34. Gallegos, C. L. 2001. Calculating optical water quality targets to restore and protect submersed aquatic vegetation: Overcoming problems in partitioning the diffuse attenuation coefficient for photosynthetically active radiation.Estuaries 24: 381–397.CrossRefGoogle Scholar
  35. Glazer, B. T. 1999. Analysis of physical, chemical, and biological factors inhibiting growth and restoration of submerged vascular plants in Delaware’s Indian River and Rehoboth Bays. M.S. Thesis University of Delaware, Newark Delaware.Google Scholar
  36. Goldsborough, W. G. andW. M. Kemp. 1988. Light Response and adaptation for the submersed macrophyte,Potanogeton perfoliatus. Implications for survival in turbid tidal waters.Ecology 69:1775–1786.CrossRefGoogle Scholar
  37. Goodman, J., K., Moore, andW. Dennison. 1995. Photosynthetic responses of eelgrass (Zostera marina) to light and sediment sulfide in shallow barrier lagoon.Aquatic Botany 50:37–48.CrossRefGoogle Scholar
  38. Gordon, D. M., K. A. Grey, S. C. Chase, andC. J. Simpson. 1994. Changes to the structure and productivity of aPosidonia sinuosa meadow during and after imposed shading.Aquatic Botany 47:265–275.CrossRefGoogle Scholar
  39. Guarraci, M. 1999. Interaction between epiphyte organic mass and resuspended inorganic materials on leaves of natural and artificial SAV. M.S. Thesis, University of Maryland. College Park, Maryland.Google Scholar
  40. Hannan, H. H. 1967. Macrophyte standing crop and metabolism in a contant temperature river. Ph. D. Dissertation, Oklahoma State University, Stillwater, Oklahoma.Google Scholar
  41. Heck, K. L., K. Able, C. Roman, andM. Fahay. 1995. Composition, abundance, biomass and production of macrofauna in a New England estuary: Comparison among eelgrass meadows and other nursery habitats.Estuaries 18:379–389.CrossRefGoogle Scholar
  42. Hicks, S. D. 1964. Tidal wave characteristics of Chesapeake Bay.Chesapeake Science 5:103–113.CrossRefGoogle Scholar
  43. Holmer, M. andE. J. Bondgaard. 2001. Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events.Aquatic Botany 70:29–38.CrossRefGoogle Scholar
  44. Joanen, T. andL. L. Glasgow. 1965. Factors influencing the establishment of widgeon grass stands in Louisiana.Southeastern Association Game Fish Commission Conference 19:78–92.Google Scholar
  45. Karrh, L. 2000. Comparing nearshore and midchannel water quality conditions, p. 131–158.In R. Batiuk, R. Orth, K. Moore, J. C. Stevenson, W. Dennison, L. Staver, V. Carter, N. Rybicki, R. Hickman, S. Kollar, and S. Bieber (eds., Chesapeake Bay Submerged Aquatic Vegetation Water Quality and Habitat-Based Requirements and Restoration Targets: A Second Technical Synthesis. CBP/TRS 245/00. EPA 903-R-00-014. U.S. EPA, Chesapeake Bay Program, Annapolis, Maryland.Google Scholar
  46. Kemp, W. M., R. Bartleson, andL. Murray. 2000. Epiphyte contributions to light attenuation at the leaf surface, p. 55–70.In R. Batiuk, R. Orth, K. Moore, J. C. Stevenson, W. Dennison, L. Staver, V. Carter, N. Rybicki, R. Hickman, S. Kollar, and S. Bieber (eds.), Chesapeake Bay Submerged Aquatic Vegetation Water Quality and Habitat-Based Requirements and Restoration Targets: A Second Technical Synthesis. CBP/TRS 245/00. EPA 903-R-00-014 U.S. EPA, Chesapeake Bay Program, Annapolis, Maryland.Google Scholar
  47. Kemp, W. M., W. R. Boynton, J. J. Cunningham, J. C. Stevenson, T. W. Jones, andJ. C. Means. 1985. Effects of atrazine and linuron on photosynthesis and growth of macrophytes,Potamogeton perfoliatus L. andMyriophyllum spicatum L., in an estuarine environment.Marine Environmental Research 16:255–280.CrossRefGoogle Scholar
  48. Kemp, W. M., W. R. Boynton, J. C. Stevenson, R. R. Twilley, andJ. C. Means. 1983. The decline of submerged vascular plants in upper Chesapeake Bay: Summary of results concerning possible causes.Marine Technology Society Journal 17: 78–89.Google Scholar
  49. Kemp, W. M., S. Puskaric, A. Faganeli, E. Smith, andW. Boynton. 1999. Pelagic-benthic coupling and nutrient cycling, p. 295–339.In T. Malone, A. Malej, L. Harding, N. Smodlaka, and R. Turner (eds.), Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Sea. American Geophysical Union Publication, Washington, D.C.Google Scholar
  50. Kirk, J. T. O. 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge, U.K.Google Scholar
  51. Koch, E. W. 1994. Hydrodynamics, diffusion-boundary layers and photosynthesis of the seagrassesThalassia testudinum andCymodocea nodosa.Marine Biology 118:767–776.CrossRefGoogle Scholar
  52. Koch, E. W. 2001. Beyond light: Physical, geological and geochemical parameters as possible submersed aquatic vegetation habitat requirements.Estuaries 24:1–17.CrossRefGoogle Scholar
  53. Koch, E. W. andS. Beer. 1996. Tides, light and the distribution ofZostera marina in Long Island Sound, USA.Aquatic Botany 53:97–107.CrossRefGoogle Scholar
  54. Koch, E. W. andG. Gust. 1999. Water flow in tide- and wavedominated beds of the seagrassThalassia testudinum.Marine Ecology Progress Series 184:63–72.CrossRefGoogle Scholar
  55. Koch, M. S. andJ. M. Erskine. 2001. Sulfide as a phytotoxin to the tropical seagrassThalassia testudinum: Interactions with light, salinity and temperature.Journal of Experimental Marine Biology and Ecology 266:81–95.CrossRefGoogle Scholar
  56. Kuhn, W. A. 1992. Interacting effects of light and sediment sulfide on eelgrass (Zostera marina) growth. M.S. Thesis, University of Maryland, College Park Maryland.Google Scholar
  57. Landwehr, J. M., J. T. Reel, N. B. Rybicki, H. A. Ruhl, and V. Carter. Chesapeake Bay habitat criteria scores and the distribution of submersed aquatic vegetation in the tidal Potomac River and estuary. Open File Report 99-219. U.S. Geological Survey, Reston, Virginia. <http://water.usgs.ggov/pubs/ofr/ofr99-219/>Google Scholar
  58. Lee, K. andK. H. Dunton. 1997. Effects of in situ light reduction on the maintenance, growth and partitioning of carbon resources inThalassia testudinum Banks ex. Konig.Journal of Experimental Marine Biology and Ecology 210:53–73.CrossRefGoogle Scholar
  59. Losee, R. F. andR. G. Wetzel. 1983. Selective light attenuation by the periphyton complex, p. 89–96.In R. G. Wetzel (ed.), Periphyton of Freshwater Ecosystems. Dr. W. Junk Publishers, The Hague, Netherlands.Google Scholar
  60. Lubbers, L., W. R. Boynton, andW. M. Kemp. 1990. Variations in structure of estuarine fish communities in relation to abundance of submersed vascular plants.Marine Ecology Progress Series 65:1–14.CrossRefGoogle Scholar
  61. Maberly, S. C. 1993. Morphological and photosynthetic characteristics ofPotamogeton obtusifolius from different depths.Journal of Aquatic Plant Management 31:34–39.Google Scholar
  62. Madden, C. andW. Kemp. 1996. Ecosystem model of an estuarine submersed plant community: Calibration and simulation of eutrophication responses.Estuaries 19:457–474.CrossRefGoogle Scholar
  63. Madsen, T. V. andM. Søndergaard. 1983. The effects of current velocity on photosynthesis ofCallitriche stagnalis.Aquatic Bontany 15:187–193.CrossRefGoogle Scholar
  64. McGlathery, K. J. 1995. Nutrient and grazing influences on a subtropical seagrass community.Marine Ecology Progress Series 122:239–252.CrossRefGoogle Scholar
  65. Merrell, K. C. 1996. The effects of flow and mixing onVallisneria americana and its associated community in experimental mesocosms. M.S. Thesis, University of Maryland, College Park, Maryland.Google Scholar
  66. Middelboe, A. L. andS. Markager. 1997. Depth Limits and minimum light requirements of freshwater macrophytes.Freshwater Biology 37:553–568.CrossRefGoogle Scholar
  67. Moore, K. A. 1996. Relationships between seagrass growth and survival and environmental conditions in a lower Chesapeake Bay tributary. Ph.D. Dissertation, University of Maryland. College Park, Maryland.Google Scholar
  68. Moore, K. A., H. A. Neckles, andR. J. Orth. 1996.Zostera marina (eelgrass) growth and survival along a gradient of nutrients and turbidity in the lower Chesapeake Bay.Marine Ecology Progress Series 142:247–259.CrossRefGoogle Scholar
  69. Moore, K. A., D. J. Wilcox, andR. J. Orth. 2000. Analysis of the abundance of submersed aquatic vegetation communities in the Chesapeake Bay.Estuaries 23:115–127.CrossRefGoogle Scholar
  70. Neckles, H. A. 1990. Relative effects of nutrient enrichment and grazing on epiphyton-macrophyte (Zostera marina L.) dynamics. Ph.D. Dissertation, College of William and Mary. Williamsburg, Virginia.Google Scholar
  71. Neundorfer, J. V. andW. M. Kemp. 1993. Nitrogen versus phosphorus enrichment of brackish waters: Response ofPotomogeton perfoliatus and its associated algal communities.Marine Ecology Progress Series 94:71–82.CrossRefGoogle Scholar
  72. Nielsen, S. L., K. Sand-Jensen, J. Borum, andOle Geertz-Hansen. 2002. Depth colonization of eelgrass (Zostera marina) and macroalgae as determined by water transparency in Danish coastal waters.Estuaries 25:1025–1032.CrossRefGoogle Scholar
  73. National Research Council. 2001. Assessing the TMDL approach to water quality management. National Academy Press, Washington, D.C.Google Scholar
  74. Olesen, B. 1996. Regulation of light attenuation and eelgrassZostera marina depth distribution in a Danish embayment.Marine Ecology Progress Series 134:187–194.CrossRefGoogle Scholar
  75. Orth, R. J. andK. A. Moore. 1983. Chesapeake Bay: An unprecedented decline in submerged aquatic vegetation.Science 222:51–53.CrossRefGoogle Scholar
  76. Phillips, R. C. 1974. Temperate grass flats, p. 244–299.In H. T. Odum, B. J. Copeland, and E. A. McMahan (eds.), Coastal Ecological Systems of the United States, Volume 2. Corservation Foundation, Washington, D.C.Google Scholar
  77. Posey, M. H., C. Wigand, andJ. C. Stevenson. 1993. Effects of an introduced aquatic plant,Hydrilla verticillata, on benthic communities in the upper Chesapeake Bay.Estuarine, Coastal and Shelf Science 37:539–555.CrossRefGoogle Scholar
  78. Pulich, W. M. 1983. Growth response ofHalophila enegelmanii to sulfide, cooper and organic nitrogen in marine sediments.Plant Physiology 71:975–978.Google Scholar
  79. Pulich, W. M. andW. A. White. 1991. Decline of submerged vegetation in the Galveston Bay system: Chronology and relationships to physical processes.Journal of Coastal Research 7: 1125–1138.Google Scholar
  80. Quammen, M. L. andC. P. Onuf. 1993. Laguna Madre: Seagrass changes continue decades after salinity reduction.Estuaries 16:302–310.CrossRefGoogle Scholar
  81. Rawls, C. K. 1975. Mechanical control of Eurasian watermilfoil in Maryland with and without 2,3-D application.Chesapeake Science 16:266–281.CrossRefGoogle Scholar
  82. Rørslett, B. 1987. A generalized spatial niche model for aquatic macrophytes.Aquatic Botany 29:63–81.CrossRefGoogle Scholar
  83. Rybicki, N. B., H. L. Jenter, V. Carter, R. A. Baltzer, andM. Turtora. 1997. Observations of tidal flux between a submersed aquatic plant stand and the adjacent channel in the Potomac River near Washington, D.C.Limnology and Oceangraphy 42:307–317.CrossRefGoogle Scholar
  84. Sand-Jensen, K. 1990. Epiphyte shading: Its role in resulting depth distribution of submerged aquatic macrophytes.Folia Geobotanica et Phytotaxonomica 25:315–320.Google Scholar
  85. Sand-Jensen, K. andJ. Borum. 1983. Regulation of growth of eelgrass (Zostera marina L.) in Danish coastal waters.Marine Technology Society Journal 17:15–21.Google Scholar
  86. Schubel, J. R. andR. B. Biggs. 1969. Distribution of sestion in upper Chesapeake Bay.Chesapeake Science 10:18–23.CrossRefGoogle Scholar
  87. Scoffin, T. P. 1970. The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas,Journal of Sediment Petrology 40:249–273.Google Scholar
  88. Sculthorpe, C. D. 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, Ltd., London, U.K.Google Scholar
  89. Short, F., D. Burdick, J. Wolf, andC. Jones. 1993. Eelgrass in estuarine research reserves along the East Coast, USA, Part I: Declines from pollution and disease, Part II: Management of eelgrass meadows, National Oceanic and Atmospheric Administration Coastal Ocean Program Publication, Durham, New Hampshire.Google Scholar
  90. Short, F. T. andS. Wyllie-Echeverria. 1996. Natural and human-induced disturbance of seagrasses.Environmental Conservation 23:17–27.CrossRefGoogle Scholar
  91. Stankelis, R., M. Naylor, andW. R. Boynton. 2003. Submerged aquatic vegetation in the Patuxent River estuary past, present and future status.Estuaries 26:186–195.Google Scholar
  92. Staver, K. 1984. Responses of epiphytic algae to nitrogen and phosphorus enrichment and effects on productivity of the host plant,Potamogeton perfoliatus L., in estuarine waters. M.S. Thesis, University of Maryland, College Park, Maryland.Google Scholar
  93. Stevenson, J. C., L. W. Staver, andK. W. Staver. 1993. Water quality associated with survival of submersed aquatic vegetation along an estuarine gradient.Estuaries 16:346–361.CrossRefGoogle Scholar
  94. Stewart, R., D. McFarland, D. Ward, S. Martin, andJ. W. Barko. 1997. Flune study investigation of the direct impacts of navigation-generated waves on submersed aquatic macrophytes in the upper Mississippi River. ENV Report 1. U.S. Army Corps of Engineers, St. Paul, Minnesota.Google Scholar
  95. Tomasko, D. A., C. J. Dawes, andM. O. Hall. 1996. The effects of anthropogenic nutrient enrichment on turtle grass (Thalassia testudinum) in Sarasota Bay, Florida.Estuaries 19:448–456.CrossRefGoogle Scholar
  96. Twilley, R. R., W. M. Kemp, K. W. Staver, J. C. Stevenson, andW. R. Boynton. 1985. Nutrient enrichment of estuarine submersed vascular plant communities: I. Algal growth and effects on production of plants and associated communities.Marine Ecology Progress Series 23:179–191.CrossRefGoogle Scholar
  97. Valdes-Murtha, L. M. 1997. Analysis of critical habitat requirements for growth and restoration of submerged vascular plants in Delaware and Maryland coastal bays. M.S. Thesis, University of Delaware, Newark, Delaware.Google Scholar
  98. van Dijk, G. M. 1993. Dynamics and attenuation characteristics of periphyton upon artificial substratum under various light conditions and some additional observations on periphyton uponPotamogeton pectinatus L..Hydrobiologia 252:143–161.CrossRefGoogle Scholar
  99. Vant, W. N., R. J. Davies-Colley, J. S. Clayton, andB. J. Coffey. 1986. Macrophyte depth limits in North Island (New Zealand) lakes of differing clarify.Hydrobiologia 137:55–60.CrossRefGoogle Scholar
  100. Vermaat, J. E., N. Agawan, M. Fortes, J. Uri, C. Duarte, N. Marba, S. Enriquez, andW. van Vierssen. 1996. The capacity of seagrasses to survive increased turbidity and siltation: The significance of growth form and light use.Ambio 25:499–504.Google Scholar
  101. Vermaat, J. E. andR. J. De Bruyne. 1993. Factors limiting the distribution of submerged waterplants in a lowland River Vecht (The Netherlands).Freshwater Biology 30:147–157.CrossRefGoogle Scholar
  102. Vermaat, J. E. andM. J. M. Hootsmans. 1994. Periphyton dynamics in a temperature-light gradient, p. 193–212.In W. van Vierssen, M. Hootsmans, and J. Vermaat (eds.). Lake Veluwe, A Macrophyte-Dominated System Under Eutrophication Stress. Kluwer Academic Press, Dordrecht, The Netherlands.Google Scholar
  103. Walker, D. I. andA. J. McComb. 1992. Seagrass degradation in Australian coastal waters.Marine Pollution Bulletin 25:5–8.CrossRefGoogle Scholar
  104. Ward, L. G., W. M. Kemp, andW. R. Boynton. 1984. The influence of water depth and submerged vascular plants on suspended particulates in a shallow estuarine embayment.Marine Geology 59:85–103.CrossRefGoogle Scholar
  105. Werner, I. andG. Wise. 1982. Biomass production of submersed macrophytes in a selected stretch of the River Zschopau (South GDR) with special regard to orthophosphate incorporation.Internationale Revue gestamen Hydrobiologie 67:45–62.Google Scholar
  106. Westlake, D. F. 1967. Some effects of low-velocity currents on the metabolism of aquatic macrophytes.Journal of Experimental Botany 18:187–205.CrossRefGoogle Scholar
  107. Wilcox, D. J., M. C. Harwell, andR. J. Orth. 2000. Modeling dynamic polygon objects in space and time: A new graph-based technique.Cartography and Geographic Information Science 27:153–164.CrossRefGoogle Scholar
  108. Zimmerman, R. C., J. Reguzzoni, S. Wyllie-Echeverria, M. Josselyn, andR. Alberte. 1991. Assessment of environmental suitability for growth ofZostera marina L. (eelgrass) in San Francisco Bay.Aquatic Botany 39:353–366.CrossRefGoogle Scholar

Sources of Unpublished Materials

  1. Boynton, W., R. Stankelis, F. Rohland, J. Frank, L. Matteson, N. Burger, M. Weir, andJ. Hagy. 1999. Ecosystem processes component of Chesapeake Bay water quality monitoring program. Report, University of Maryland, Chesapeake Biological Laboratory, Solomons, Maryland.Google Scholar
  2. Chesapeake Bay Program. 1993. Guide to Using Chesapeake Bay Water Quality Monitoring Data. CBP/TRS 78/92. Chesapeake Bay Program Office. Annapolis, Maryland. <http://www.chesapeakebay.net/data/index.htm>Google Scholar
  3. Chesapeake Executive Council. 2000. Chesapeake 2000 Agreement. Chesapeake Executive Council. Annapolis, Maryland. <website, http://www.chesapeakebay.net/pubs/>Google Scholar
  4. Conover, J. T. 1964. Environmental relationships of benthos in salt ponds (plant relationships). Technical Report. No. 3 University of Rhode Island, Graduae School of Oceanography, Narragansett, Rhode Island.Google Scholar
  5. Stevenson, J. C. andN. M. Confer. 1978. Summary of available information on Chesapeake Bay submerged vegetation. OBS 78/66. U.S. Fish Wildlife Service/National Technical Information Service, Springfield, Virginia.Google Scholar

Copyright information

© Estuarine Research Federation 2004

Authors and Affiliations

  • W. Michael Kemp
    • 1
  • Richard Batleson
    • 2
  • Peter Bergstrom
    • 3
  • Virginia Carter
    • 4
  • Charles L. Gallegos
    • 5
  • William Hunley
    • 6
  • Lee Karrh
    • 7
  • Evamaria W. Koch
    • 1
  • Jurate M. Landwehr
    • 4
  • Kenneth A. Moore
    • 8
  • Laura Murray
    • 1
  • Michael Naylor
    • 7
  • Nancy B. Rybicki
    • 4
  • J. Court Stevenson
    • 1
  • David J. Wilcox
    • 8
  1. 1.Horn Point LaboratoryUniversity of Maryland Center for Environmental Science (CES)Cambridge
  2. 2.Chesapeake Bay Program OfficeU.S. Environmental Protection AgencyAnnapolis
  3. 3.U.S. Fish and wildlife ServiceAnnapolis
  4. 4.U.S. Geological SurveyReston
  5. 5.Smithsonian Environmental Research CenterEdgewater
  6. 6.Hampton Roads Sanitation DistrictVirginia Beach
  7. 7.Maryland Department of Natural ResourcesAnnapolis
  8. 8.Virginia Institute of Marine SciencesGloucester Point

Personalised recommendations