Israel Journal of Mathematics

, Volume 118, Issue 1, pp 83–108

Center conditions III: Parametric and model center problems

Article

Abstract

We consider an Abel equation (*)y’=p(x)y2 +q(x)y3 withp(x), q(x) polynomials inx. A center condition for (*) (closely related to the classical center condition for polynomial vector fields on the plane) is thaty0=y(0)≡y(1) for any solutiony(x) of (*).

Folowing [7], we consider a parametric version of this condition: an equation (**)y’=p(x)y2 +εq(x)y3p, q as above, ε ∈ ℂ, is said to have a parametric center, if for any ɛ and for any solutiony(ɛ,x) of (**)y(ɛ, 0)≡y(ɛ, 1)..

We give another proof of the fact, shown in [6], that the parametric center condition implies vanishing of all the momentsmk (1), wheremk(x)=∫0xpk(t)q(t)(dt),P(x)=∫0xp(t)dt. We investigate the structure of zeroes ofmk(x) and generalize a “canonical representation” ofmk(x) given in [7]. On this base we prove in some additional cases a composition conjecture, stated in [6, 7] for a parametric center problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. A. M. Alwash,On a condition for a centre of cubic non-autonomous equations, Proceedings of the Royal Society of Edinburgh113A (1989), 289–291.MathSciNetGoogle Scholar
  2. [2]
    M. A. M. Alwash and N. G. Lloyd,Non-autonomous equations related to polynomial two-dimensional systems, Proceedings of the Royal Society of Edinburgh105A (1987), 129–152.MathSciNetGoogle Scholar
  3. [3]
    M. A. M. Alwash and N. G. Lloyd,Periodic solutions of a quartic nonautonomous equation, Nonlinear Analysis. Theory, Methods and Applications11 (1987), 809–820.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    M. Briskin,Algebra of the model problem, in preparation.Google Scholar
  5. [5]
    M. Briskin, J.-P. Francoise and Y. Yomdin,The Bautin ideal of the Abel equation, Nonlinearity11 (1998), 431–443.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    M. Briskin, J.-P. Francoise and Y. Yomdin,Center conditions, composition of polynomials and moments on algebraic curves, Ergodic Theory and Dynamical Systems19 (1999), 1201–1220.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    M. Briskin, J.-P. Francoise and Y. Yomdin,Center conditions II: Parametric and model center problems, Israel Journal of Mathematics, this volume.Google Scholar
  8. [8]
    C. J. Christopher,Small-amplitude limit cycles in polynomial Liénard systems, NoDEA, Nonlinear Differential Equations and Applications3 (1996), 183–190.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    J. Devlin,Word problem related to periodic solutions of a non-autonomous system, Mathematical Proceedings of the Cambridge Philosophical Society108 (1990), 127–151.MATHMathSciNetGoogle Scholar
  10. [10]
    J. Devlin,Word problems related to derivatives of the displacement map, Mathematical Proceedings of the Cambridge Philosophical Society110 (1991), 569–579.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Lins Neto,On the number of solutions of the equation x′=P(x,t) for which x(0)=x(1), Inventiones Mathematicae59 (1980), 67–76.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 2000

Authors and Affiliations

  1. 1.Jerusalem College of EngineeringJerusalemIsrael
  2. 2.Département de MathématiquesUniversité de Paris VI, U.F.R. 920, 46-56ParisFrance
  3. 3.Department of Theoretical MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations