Journal d’Analyse Mathématique

, Volume 41, Issue 1, pp 54–84

Bloch constants

  • C. David Minda
Article
  • 82 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. V. Ahlfors,An extension of Schwarz's lemma, Trans. Am. Math. Soc.43 (1938), 359–364.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    L. V. Ahlfors,Comformal Invariants. Topics in Geometric Function Theory, McGraw-Hill, New York, 1973.Google Scholar
  3. 3.
    L. V. Ahlfors and H. Grunsky,Über die Blochsche Konstante, Math. Z.42 (1937), 671–673.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    C. Carathéodory,Theory of Functions, Vol. I, 2nd ed., Chelsea, New York, 1958.Google Scholar
  5. 5.
    C. Carathéodory,Theory of Functions, Vol. II, 2nd ed., Chelsea, New York, 1960.Google Scholar
  6. 6.
    G. M. Goluzin,Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, Am. Math. Soc., Providence, 1969.MATHGoogle Scholar
  7. 7.
    R. E. Greene and H. Wu,Bloch's theorem for meromorphic functions, Math. Z.116 (1970), 247–257.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Heins,On a class of conformal metrics, Nagoya Math. J.21 (1962), 1–60.MATHMathSciNetGoogle Scholar
  9. 9.
    V. Jørgensen,A remark on Bloch's theorem, Mat. Tidsskr. B. 1952 (1952), 100–103.MATHMathSciNetGoogle Scholar
  10. 10.
    E. Landau,Der Picard-Schottkysche Satz und die Blochsche Konstante, Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl. (1926), 467–474.Google Scholar
  11. 11.
    E. Landau,Über die Blochsche Konstante und zweis verwandte Weltkonstanten, Math. Z.30 (1929), 608–634.CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    C. D. Minda,The hyperbolic metric and coverings of Riemann surfaces, Pacific J. Math.84 (1979), 171–182.MATHMathSciNetGoogle Scholar
  13. 13.
    C. D. Minda,Euclidean, hyperbolic and spherical Bloch constants, Bull. Am. Math. Soc.6 (1982), 441–444.MATHMathSciNetGoogle Scholar
  14. 14.
    C. D. Minda,Bloch constants for meromorphic functions, Math. Z., to appear.Google Scholar
  15. 15.
    E. Peschl,Über die Verwendung von Differentialinvarienten bei gewissen Funktionenfamilien und die Übertragung einer darauf gegründeten Methode auf partielle Differentialgleichungen vom elliptische Typus, Ann. Acad. Sci. Fenn. Ser. AI No. 336/6 (1963), 23 pp.Google Scholar
  16. 16.
    E. Peschl,Über unverzweigte konforme Abbildungen, Österreich. Akad. Wiss. Math.-Naturwiss. Kl. S-B. II185 (1976), 55–78.MathSciNetMATHGoogle Scholar
  17. 17.
    Ch. Pommerenke,Estimates for normal meromorphic functions, Ann. Acad. Sci. Fenn. Ser. AI, no. 476 (1970), 10p.Google Scholar
  18. 18.
    Ch. Pommerenke,On Bloch functions, J. London Math. Soc. (2)2 (1970), 689–695.MATHMathSciNetGoogle Scholar
  19. 19.
    Ch. Pommerenke,Normal functions, Proc. NRL Conf. on Classical Function Theory, Math. Res. Center, Naval Res. Lab., Washington, D. C., 1970.Google Scholar
  20. 20.
    R. M. Robinson,Bloch constants, Duke Math. J.2 (1936), 453–459.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    H. L. Royden,Real Analysis, 2nd ed., Macmillan, New York, 1968.Google Scholar
  22. 22.
    D. Stegenga and K. Stephenson,A geometric characterization of analytic functions with bounded mean oscillation, J. London Math. Soc. (2)24 (1981), 243–254.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    M. Tsuji,On an extension of Bloch's theorem, Proc. Imp. Acad. Jpn.18 (1942), 170–171.MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Tsuji,Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.MATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1982

Authors and Affiliations

  • C. David Minda
    • 1
  1. 1.Department of MathematicsUniversity of California-San DiegoLa JollaUSA
  2. 2.Department of Mathematical SciencesUniversity of CincinnatiCincinnatiUSA

Personalised recommendations