Advertisement

Estuaries

, Volume 26, Issue 4, pp 1010–1031 | Cite as

Oceanography of the U.S. Pacific Northwest Coastal Ocean and estuaries with application to coastal ecology

  • Barbara M. Hickey
  • Neil S. Banas
Article

Abstract

Ocean processes are generally large scale on the U.S. Pacific Northwest coast; this is true of both seasonal variations and event-scale upwelling-downwelling fluctuations., which are highly energetic. Coastal upwelling supplies most of the macronutrients available for production, although the intensity of upwelling-favorable wind forcing increases southward while primary production and chlorophyll are higher in the north, off the Washington coast. This discrepancy could be related to several mesoscale features: the wider, more gently sloping shelf to the north, the existence of numerous submarine canyons to the north, the availability of Columbia River plume water and sediment north of the river mouth, and the existence of a semi-permanent eddy offshore of the Strait of Juan de Fuca. We suggest that these features have important effects on the magnitude and timing of macronutrient or micronutrient delivery to the plankton. These features are potentially important as well to transport pathways and residence times of planktonic larvae and to the development of harmful algal blooms. The coastal plain estuaries, with the exception of the Columbia River, are relatively small, with large tidal forcing and highly seasonal direct river inputs that are low to negligible during the growing season. Primary production in these estuaries is likely controlled not by river-driven stratification but by coastal upwelling and exchange with the ocean. Both baroclinic mechanisms (the gravitational circulation) and barotropic ones (lateral stirring by tide and, possibly, wind) contribute to this exchange. Because estuarine hydrography and ecology are so dominated by ocean signals, the coastal estuaries, like the coastal ocean, are largely synchronous on seasonal and event time scales, though, intrusions of the Columbia River plume can cause strong asymmetries between Washington and Oregon estuaries especially during spring downwelling conditions. Water property correlation increases between spring and summer as wind forcing becomes more spatially coherent along the coast. Estuarine habitat is structure not only, by large scale forcing but also by fine scale processes in the extensive intertidal zone, such as by solar heating or differential advection by tidal, curents.

Keywords

Wind Stress Coastal Upwelling River Plume Domoic Acid Submarine Canyon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allen, S. 1996. Topographically generated, subinertial flows within a finite length canyon.Journal of Physical Oceanography 26:1608–1632.CrossRefGoogle Scholar
  2. Allen, J. S. andP. A. Newberger. 1996. Downwelling circulation on the Oregon continental shelf. Part I: Response to idealized forcing.Journal of Physical Oceanography 26:2011–2035.CrossRefGoogle Scholar
  3. Allen, J. S., P. A. Newberger., andJ. Federiuk. 1995. Upwelling circulation on the Oregon continental shelf. Part I: Response to idealized forcing.Journal of Physical Oceanography 25:1843–1866.CrossRefGoogle Scholar
  4. Anderson.,G. C. 1972. Aspects of marine phytoplankton studies near the Columbia River, with special reference to a subsurface chlorophyll maximum, p. 219–240.In D. L. Alverson and A. L. Pruter (eds.), Bioenvironmental Studies, of the Columbia River Estuary and Adjacent Ocean Regions. University of Washington Press, Seattle, Washington.Google Scholar
  5. Andrews, R. S. 1965. Modern Sediments of Willapa Bay, Washington: A Coastal Plain Estuary. Technical Report Number 118. Department of Oceanography, University of Washington, Seattle, Washington.Google Scholar
  6. Barnes, C. A., A. C. Duxbury, andB. A. Morse 1972. Circulation and selected properties of the Columbia River effluent at sea, p. 41–80.In D. L. Alverson and A. L. Pruter (eds.), Bioenvironmental Studies of the Columbia River Estuary and Adjacent Ocean Regions. University of Washington Press, Seattle, Washington.Google Scholar
  7. Barth, J. A., S. D. Pierce andR. L. Smith. 2000. A separating coastal upwelling jet at Cape Blanco, Oregon and its connection to the California Current System.Deep-Sea Research 11: 783–810.Google Scholar
  8. Batteen, M. L. 1997. Wind-forced modeling studies of currents, meanders and eddies in the California Current System.Journal of Geophysical Research 102:985–1010.CrossRefGoogle Scholar
  9. Battisti, D. andB. M. Hickey. 1984. Application of remote wind forced coastal trapped wave theory to the Oregon and Washington coasts.Journal of Physical Oceanography 14:887–903.CrossRefGoogle Scholar
  10. Bottom, D. L., C. A. Simenstad, A. M. Baptista, D. A. Jay, J. Burke, K. K. Jones, E., Casillas, andM. H. Sciewe. 2001. Salmon at River's End: The Role of the Estuary in the Decline and Recovery of Columbia River Salmon. U. S. National Marine Fisheries Service, Seattle, Washington.Google Scholar
  11. Brink, K. H., D. C. Chapman, andG. R. Halliwell. 1987. A stochastic model for wind-driven currents over the continental shelf.Journal of Geophysical Research 92:1783–1797.CrossRefGoogle Scholar
  12. Brink, K. H., J. H. La Case, andJ. D. Irish. 1994. The effect of short-scale wind variations on shelf currents.Journal of Geophysical Research 99:3305–3315.CrossRefGoogle Scholar
  13. Conomos, T. J., M. G. Gross, C. A. Barnes, andF. A. Richards. 1972. River-ocean nutrient relations in summer, p. 151–175.In A. T. Pruter and D. L. Alverson (eds.), The Columbia River Estuary and Adjacent Ocean Waters. University of Washington Press, Seattle, Washington.Google Scholar
  14. de Angelis, M. A. andL. I. Gordon. 1985. Upwelling and river runoff as sources of dissolved nitrous oxide to the Alsea estuary, Oregon.Estuarine, Coastal and Shelf Science 20:375–386.CrossRefGoogle Scholar
  15. Duxbury, A. C. 1979. Upwelling and estuary flushing.Limnology and Oceanography 24:627–633.CrossRefGoogle Scholar
  16. Dyer, K. R. 1973. Estuaries: A Physical Introduction. Wiley, New York.Google Scholar
  17. Emmett, R., R. Llanso, J. Newton, R. Thom, M. Hornberger, C. Morgan, C. Levings, A. Copping, andP. Fishman. 2000. Geographic signatures of North American West Coast estuaries.Estuaries 23:765–792.CrossRefGoogle Scholar
  18. Fischer, H. B. 1976. Mixing and dispersion in estuaries.Annual Review of Fluid Mechanics 8:107–133.CrossRefGoogle Scholar
  19. Freeland, H. J. andK. L. Denman. 1982. A topographically controlled upwelling center off southern Vancouver Island.Journal of Marine Research 40:1069–1093.Google Scholar
  20. Friedrichs, C. T., D. R. Lynch, andD. G. Aubrey. 1992. Velocity asymmetries in frictionally-dominated tidal embayments: Longitudinal and lateral variability, p. 277–312.In D. Prandle (ed.), Dynamics and Exchanges in Estuaries and the Coastal Zone. American Geophysical Union, Washington, D.C.Google Scholar
  21. Garcia-Berdeal, I., B. M. Hickey, andM. Kawase. 2002. Influence of wind stress and ambient flow on a high discharge river plume.Journal of Geophysical Research 107:3130.CrossRefGoogle Scholar
  22. Geyer, W. R. 1997. Influence of wind on dynamics and flushing of shallow estuaries.Estuarine, Coastal and Shelf Science 44:713–722.CrossRefGoogle Scholar
  23. Halliwell, Jr.,G. H. andJ. S. Allen. 1987. Large-scale coastal wind field along the west coast of North America, 1981–1982.Journal of Geophysical Research 92:1861–1884.CrossRefGoogle Scholar
  24. Hansen, D. V. andM. Rattray, Jr. 1965. Gravitational circulation in straits and estuaries.Journal of Marine Research 23:104–122.Google Scholar
  25. Hansen, D. V. andM. Rattray, Jr. 1966. New dimensions in estuary classification.Limnology and Oceanography 11:319–326.Google Scholar
  26. Hickey, B. M. 1979. The California current system—Hypotheses and facts.Progress in Oceanography 8:191–279.CrossRefGoogle Scholar
  27. Hickey, B. M. 1989. Patterns and processes of shelf and slope circulation, p. 41–115.In M. R. Landry and B. M. Hickey (eds.), Coastal Oceanography of Washington and Oregon. Elsevier Science, Amsterdam, The Netherlands.CrossRefGoogle Scholar
  28. Hickey, B. M. 1992. Circulation over the Santa Monica-San Pedro basin and shelf.Progress in Oceanography 30:37–115.CrossRefGoogle Scholar
  29. Hickey, B. M. 1995. Coastal submarine canyons, p. 95–110.In P. Muller and D. Henderson (eds.), Proceedings of the University of Hawaii ‘Aha Huliko’'a Workshop on Flow Topography Interactions. SOEST Special Publication. University of Hawaii, Honolulu, Hawaii.Google Scholar
  30. Hickey, B. M. 1997. Response of a narrow submarine canyon to strong wind forcing.Journal of Physical Oceanography 27:697–726.CrossRefGoogle Scholar
  31. Hickey, B. M. 1998. Coastal oceanography of Western North America from the tip of Baja California to Vancouver Is, p. 345–393.In K. H. Brink and A. R. Robinson (eds.), The Sea, Volume 11, Chapter 12. Wiley and Sons, Inc., New York.Google Scholar
  32. Hickey, B. M., L. Pietrafesa, D. Jay, andW. C. Boicourt. 1998. The Columbia River Plume Study: subtidal variability of the velocity and salinity fields.Journal of Geophysical Research 103:10339–10368.CrossRefGoogle Scholar
  33. Hickey, B. M. andT. Royer. 2001. California and Alaskan Currents. p. 368–379.In J. H. Steele, S. A. Thorpe, and K. A. Turekian (eds.), Encyclopedia of Ocean Sciences. Academic Press, San Diego, California.Google Scholar
  34. Hickey, B. M. andV. Trainer. 2003. ECOHAB PNW, a new West Coast multidisciplinary program.Limnology and Oceanography Bulletin 12:49–52.Google Scholar
  35. Hickey, B. M., R. E. Thompson, H. Yih, andP. H. LeBlond. 1991. Velocity and temperature fluctuations in a buoyancy-driven current off Vancouver Island.Journal of Geophysical Research 96:10507–10538.CrossRefGoogle Scholar
  36. Hickey, B. M., M. Zhang, andN. Banas. 2002. Coupling between the California Current System and a coastal plain estuary in low riverflow conditions.Journal of Geophysical Research 107(C10)3166.CrossRefGoogle Scholar
  37. Horner, R., B. M. Hickey, andJ. Postel. 2000.Pseudo-nitzschia blooms and physical oceanography off Washington State.South African Journal of Marine Science 22:299–308.Google Scholar
  38. Huyer, A. 1983. Upwelling in the California Current system.Progress in Oceanography 12:259–284.CrossRefGoogle Scholar
  39. Huyer, A. andR. L. Smith. 1974. A subsurface ribbon of cool water over the continental shelf off Oregon.Journal of Physical Oceanography 4:381–391.CrossRefGoogle Scholar
  40. Huzzey, L. M. 1988. The lateral density distribution in a partially mixed estuary.Estuarine, Coastal and Shelf Science 26:351–358.CrossRefGoogle Scholar
  41. Huzzey, L. M. andJ. M. Brubaker. 1988. The formation of longitudinal fronts in a coastal plain estuary.Journal of Geophysical Research 93:1329–1334.CrossRefGoogle Scholar
  42. Jay, D. A., W. R. Geyer, R. J. Uncles, J. Vallino, J. Largier, andW. R. Boynton. 1997. A review of recent developments in estuarine scalar flux estimation.Estuaries 20:262–280.CrossRefGoogle Scholar
  43. Johnson, K. S., F. P. Chavez, andG. E. Friederich. 1999. Continental shelf sediment as a primary source of iron for coastal phytoplankton.Nature 398:697–700.CrossRefGoogle Scholar
  44. Kalnay, E., M. Kanamitsu, R. Kisler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, B. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne, andD. Joseph. 1996. The NCEP/NCAR 40-year Reanalysis Project.Bulletin of the American Meteorological Society 77:437–471.CrossRefGoogle Scholar
  45. Landry, M. R. andB. M. Hickey (eds.). 1989. Coastal Oceanography of Washington and Oregon. Elsevier Press, Amsterdam, The Netherlands.Google Scholar
  46. Landry, M. R. andC. Lorenzen. 1989. Abundance, distribution and grazing impact of zooplankton on the Washington shelf, p. 175–210.In M. R. Landry and B. M. Hickey (eds.), Coastal Oceanography of Washington and Oregon. Elsevier Press, Amsterdam, The Netherlands.CrossRefGoogle Scholar
  47. Landry, M. R., J. R. Postel, W. K. Peterson, andJ. Newman. 1989. Broad-scale patterns in the distribution of hydrographic variables, p. 1–41.In M. R. Landry and B. M. Hickey (eds.), Coastal Oceanography of Washington and Oregon. Elsevier Press, Amsterdam, The Netherlands.CrossRefGoogle Scholar
  48. Lentz, S. J. 1992. The surface boundary layer in coastal upwelling regions.Journal of Physical Oceanography 22:1517–1539.CrossRefGoogle Scholar
  49. Lentz, S. J. andJ. H. Trowbridge. 1991. The bottom boundary layer over the northern California shelf.Journal of Physical Oceanography 21:1186–1201.CrossRefGoogle Scholar
  50. Lucas, L. V., J. R. Koseff, J. E. Cloern, S. G. Monismith, andJ. K. Thompson. 1999. Processes governing phytoplankton blooms in estuaries. I: The local production-loss balance.Marine Ecology Progress Series 187:1–15.CrossRefGoogle Scholar
  51. Mackas, D. L., G. C. Loutitt, andM. J. Austin. 1980. Spatial distribution of zooplankton and phytoplankton in British Columbia coastal waters.Canadian Journal of Fishery and Aquatic Science 37:1476–1487.CrossRefGoogle Scholar
  52. Malamud-Roam, K. P. 2000. Muted tidal regimes in marshes of the San Francisco-estuary: Theory and implications for ecological restoration. Ph.D. Dissertation. University of California at Berkeley, Berkeley, California.Google Scholar
  53. Monteiro, P. M. S. andJ. L. Largier. 1999. Thermal stratification in Saldhana Bay (South Africa) and subtidal, density-driven exchange with the coastal waters of the Benguela upwelling system.Estuarine and Coastal Shelf Science 49:877–890.CrossRefGoogle Scholar
  54. National Oceanic and Atmospheric Administration (NOAA). 1985. National Estuarine Inventory Data Atlas. Strategic Assessment Branch, Ocean Assessments Division, Office of Oceanography and Marine Assessment, National Ocean Service, Rockville, Maryland.Google Scholar
  55. National Oceanic and Atmospheric Administration, Environmental Protection Agency (NOAA/EPA). 1991. Susceptibility and status of West Coast estuaries to nutrient discharges: San Diego Bay to Puget Sound. Summary report, Strategic Assessment of Near Coastal Waters. NOAA/EPA, Rockville, Maryland.Google Scholar
  56. Nittrouer, C. A. 1978. The process of detrital sediment accumulation in a continental shelf environment: An examination of the Washington shelf. Ph.D. Dissertation. Department of Oceanography, University of Washington, Seattle, Washington.Google Scholar
  57. Nixon, S. W., J. W. Ammerman, L. P. Atkinson, V. M. Berounsky, G. Billen, W. C. Boicourt, W. R. Boynton, T. M. Church, D. M. Ditoro, R. Elmgren, J. H. Garber, A. E. Giblin, R. A. Jahnke, N. J. P. Owens, M. E. Q. Pilson, andS. P. Seitzinger. 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean.Biogeochemistry 35:141–180.CrossRefGoogle Scholar
  58. O'Donnell, J. 1993. Surface fronts in estuaries: A review.Estuaries 16:12–39.CrossRefGoogle Scholar
  59. Park, P. K., C. Osterberg, andW. Forster. 1972. Chemical budget of the Columbia River, p. 123–134.In A. T. Pruter and D. L. Alverson (eds.), The Columbia River Estuary and Adjacent Ocean Waters. University of Washington Press, Seattle, Washington.Google Scholar
  60. Pearcy, W. G. 1992. Ocean Ecology of North Pacific Salmonids. 1992. University of Washington Press, Seattle, Washington.Google Scholar
  61. Percy, K. L., D. A. Bella, C. Sutterlin, andP. C. Klingeman. 1974. Descriptions and information sources for Oregon estuaries. Sea Grant College Program, Oregon State University, Corvallis, Oregon.Google Scholar
  62. Pruter, A. T. andD. L. Alverson (eds.). 1972. The Columbia River Estuary and Adjacent Ocean Waters. University of Washington Press, Seattle, Washington.Google Scholar
  63. Roegner, G. C., B. M. Hickey, J. A. Newton, A. L. Shanks, andD. A. Armstrong. 2002. Estuarine-nearshore links during a coastal upwelling-downwelling cycle: Plume and bloom intrusions into Willapa Bay, Washington.Limnology and Oceanography. 47:1033–1042.Google Scholar
  64. Rooper, C. N. 2002. English sole transport during pelagic stages on the Pacific Northwest coast, and habitat use by juvenile flatfish in Oregon and Washington estuaries. Ph.D. dissertation, University of Washington, Seattle.Google Scholar
  65. Smith, R. L. 1995. The physical processes of coastal upwelling systems, p. 40–64.In C. P. Summerhayes, K.-C. Emeis, M. V. Angel, R. L. Smith, and B. Zeitzschel (eds.), Upwelling in the Ocean: Modern Processes and Ancient Records. Wiley and Sons, New York.Google Scholar
  66. Strub, P. T., J. S. Allen, A. Huyer, andR. L. Smith. 1987b. Large-scale structure of the spring transition in the coastal ocean off western North America.Journal of Geophysical Research 92:1527–1544.CrossRefGoogle Scholar
  67. Strub, P. T., J. S. Allen, A. Huyer, R. L. Smith, andR. C. Beardsley. 1987a. Seasonal cycles of currents, temperatures, winds and sea level over the northeast Pacific continental shelf.Journal of Geophysical Research 92:1507–1526.CrossRefGoogle Scholar
  68. Strub, P. T. andC. James. 1988. Atmospheric conditions during the spring and fall transitions in the coastal ocean off western United States.Journal of Geophysical Research 93:15561–15584.CrossRefGoogle Scholar
  69. Strub, P. T. andC. James. 2002. Altimeter-derived surface circulation in the NE Pacific Gyres: Part I. Annual variability.Progress in Oceanography 53:163–183.CrossRefGoogle Scholar
  70. Strub, P. T., C. James, A. C. Thomas, andM. R. Abbott. 1990. Seasonal and nonseasonal variability of satellite-derived surface pigment concentration in the California current.Journal of Geophysical Research 95:1501–1530.CrossRefGoogle Scholar
  71. Strub, P. T., P. M. Kosro, andA. Huyer. 1991. The nature of cold filaments in the California current system.Journal of Geophysical Research 96:14743–14768.CrossRefGoogle Scholar
  72. Thomson, R. E. 1981. Oceanography of the British Columbia Coast. Canadian Special Publications in Fishery and Aquatic Sciences 56.Google Scholar
  73. Trainer, V. L., N. G. Adams, B. D. Bill, C. M. Stehr, J. C. Wekell, P. Moeller, M. Busman andD. Woodruff. 2000. Domoic acid production near California coastal upwelling zones, June 1998.Limnology and Oceanography 45:1818–1833.CrossRefGoogle Scholar
  74. Trainer, V. L., N. G. Adams, andJ. C. Wekell. 2001. Domoic acid-producingPseudo-nitzchia species off the U.S. west coast associated with toxification events, p. 207–233.In G. M. Hallegraeff, S. I. Blackburn, C. J. Bolch, and R. J. Lewis (eds.), Harmful Algal Blooms 2000. Intergovernmental Oceanographic Commission of UNESCO, Paris, France.Google Scholar
  75. Trainer, V. L., B. M. Hickey, andR. Horner. 2002. Biological and physical dynamics of domoic acid production off the Washington USA coast.Limnology and Oceanography 47:1438–1446.Google Scholar
  76. Tully, J. P. 1942. Surface non-tidal currents in the approaches to Juan de Fuca strait.Journal of the Fisheries Research Board of Canada 5:398–409.Google Scholar
  77. Tyler, M. A. andH. H. Seliger. 1980. Time scale variations of estuarine stratification parameters and impact on the food chains of the Chesapeake Bay, p. 207–233.In B. J. Neilson, A. Kuo, and J. Brubaker (eds.), Estuarine Circulation. Humana, Clifton, New Jersey.Google Scholar
  78. Valle-Levinson, A. andJ. O'Donnell. 1996. Tidal interaction with buoyancy driven flow in a coastal plain estuary, p. 265–281.In D. G. Aubrey and C. T. Friedrichs (eds.), Buoyancy Effects on Coastal and Estuarine Dynamics, Volume 53. American Geophysical Union, Washington, D.C.Google Scholar
  79. Venkatesh, S. andW. R. Crawford. 1993. Spread of oil from the Tenyo Maru, off the southwest coast of Vancouver Island.Natural Hazards 8:75–91.CrossRefGoogle Scholar
  80. Wang, D.-P. 1979. Wind-driven circulation in Chesapeake Bay, winter 1975.Journal of Physical Oceanography 9:564–572.CrossRefGoogle Scholar
  81. Werner, F. andB. M. Hickey. 1983. The role of an alongshore pressure gradient in Pacific Northwest coastal dynamics.Journal of Physical Oceanography 13:395–410.CrossRefGoogle Scholar
  82. Yankovsky, A. E., B. M. Hickey, andA. Munchow. 2001. The impact of variable inflow on the dynamics of a coastal buoyant plume.Journal of Geophysical Research 106:19809–19824.CrossRefGoogle Scholar

Sources of Unpublished Materials

  1. Bruland, K. personal communication. University of California, Santa Cruz, Ocean Sciences Department, A446 Earth and Marine Sciences Building, Santa Cruz, California 95064.Google Scholar
  2. Dinneman, M. personal communication. Old Dominion University, Center for Coastal Physical Oceanography, Norfolk, Virginia 23529.Google Scholar
  3. Klinck, J. personal communication. Old Dominion University, Center for Coastal Physical Oceanography, Norfolk, Virginia 23529.Google Scholar
  4. Peterson, W. personal communication. Oregon State University, College of Oceanic and Atmospheric Sciences, Hatfield Marine Science Center, 2030 SE Marine Science Drive, Newport, Oregon 97365.Google Scholar

Copyright information

© Estuarine Research Federation 2003

Authors and Affiliations

  1. 1.School of OceanographyUniversity of WashingtonSeattle

Personalised recommendations