, Volume 26, Issue 4, pp 885–893

Relating spatial and temporal variability in sediment chlorophylla and carbohydrate distribution with erodibility of a tidal flat



Trends in the spatial distribution of chlorophylla (chla) and colloidal and total carbohydrates on the Molenplaat tidal flat in the Westerschelde estuary, Netherlands, reflected spatial differences in physical properties of the sediment. Results from a Spearman Rank Order Correlation indicated that many of the physical and biological measures covaried. Multiple regression analyses describing the relationship between colloidal carbohydrates and sediment properties resulted in several highly significant equations, although in all cases chla was able to predict colloidal carbohydrate content. Relationships between sediment surface chla and colloidal carbohydrate, and sediment erodibility (i.e., critical erosion threshold, Ucrit, and mass of sediment eroded at a velocity of 30 cm s−1) determined in annular flume experiments were examined. Overall sediment erodibility was lowest (i.e., high thresholds, low mass eroded) for the siltiest sediments in June 1996 when chla and colloidal carbohydrates were high (56.9 μg gDW−1 and 320.6 μg gluc.equ. gDW−1, respectively), and greatest (i.e., low thresholds, high mass eroded) at the sandier sediments in September 1996, when chla and colloidal carbohydrates were low (1.0 μg gDW−1 and 5.7 μg gluc.equ. gDW−1, respectively). When sediments were grouped according to relative silt content, the most significant relationships were found in muddy sand with a finegrained fraction (<63 μm) of 25–50%. Thresholds of erosion increased, while mass of sediment eroded decreased, with increasing chla and colloidal carbohydrate. A similar trend was observed for the sand-muddy sand (63 μm 10–25%). In the sand (63 μm 0–10%), there were no relationships for Ucrit, whereas mass eroded appeared to increase with increasing chla and colloidal carbohydrate. The increased carbohydrate may stick sand grains together, altering the nature of erosion from rolling grains to clumps of resuspension.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Amos, C. L., G. R. Daborn, H. A. Christian, A. Atkinson, andA. Robertson. 1992. In situ erosion measurements of finegrained sediments from the Bay of Fundy.Marine Geology 10: 175–196.CrossRefGoogle Scholar
  2. Austen, I., T. J. Andersen, andK. Edelvang. 1999. The influence of benthic diatoms and invertebrates on the erodibility of an intertidal mudflat in the Danish Wadden Sea.Estuarine, Coastal and Shelf Science 49:99–111.CrossRefGoogle Scholar
  3. Barranguet, C., P. M. J. Herman, andJ. J. Sinke. 1997. Microphytobenthos biomass and community composition studied by pigment biomarkers: Importance and fate in the carbon cycle of a tidal flat.Journal of Sea Research 38:59–70.CrossRefGoogle Scholar
  4. Buzzelli, E., R. Gianna, E. Marchiori, andM. Bruno. 1997. Influence of nutrient factors on production of mucilage byAmphora coffaeaformis var.perpusilla.Continental Shelf Research 17:1171–1180.CrossRefGoogle Scholar
  5. Colijn, F. andK. S. Dijkema. 1981. Species composition of benthic diatoms and distribution of chlorophylla on an intertidal flat in the Dutch Wadden Sea.Marine Ecology Progress Series 4: 9–21.CrossRefGoogle Scholar
  6. Decho, A. W. 1990. Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes.Oceanography and Marine Biology: An Annual Revue 28: 73–153.Google Scholar
  7. de Winder, B., N. Staats, L. J. Stal, andD. M. Paterson. 1999. Carbohydrate secretion by phototrophic communities in tidal sediments.Journal of Sea Research 42:131–146.CrossRefGoogle Scholar
  8. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Reber, andF. Smith. 1956. Colorimetric method for determination of sugars and related substances.Analytical Chemistry 28:350–356.CrossRefGoogle Scholar
  9. Goto, N., T. Kawamura, O. Mitamura, andH. Terai. 1999. Importance of extracellular organic carbon production in the total primary production by tidal-flat diatoms in comparison to phytoplankton.Marine Ecology Progress Series 190:289–295.CrossRefGoogle Scholar
  10. Grant, J., U. V. Bathmann, andE. L. Mills. 1986. The interaction between benthic diatom films and sediment transport.Estuarine, Coastal and Shelf Science 23:225–238.CrossRefGoogle Scholar
  11. Grant, J. andG. R. Daborn. 1994. The effects of bioturbation on sediment transport on an intertidal mudflat.Netherlands Journal of Sea Research 32:63–72.CrossRefGoogle Scholar
  12. Jumars, P. A. andA. R. M. Nowell. 1984. Effects of benthos on sediment transport: Difficulties with functional grouping.Continental Shelf Research 3:115–130.CrossRefGoogle Scholar
  13. Lucas, C. H. andP. M. Holligan. 1999. Nature and ecological implications of algal pigment diversity on the Molenplaat tidal flat (Westerschelde estuary).Marine Ecology Progress Series 180: 51–64.CrossRefGoogle Scholar
  14. Madsen, K. N., P. Nilsson, andK. Sundbäck. 1993. The influence of benthic microalgae on the stability of a subtidal sediment.Journal of Experimental Marine Biology and Ecology 170: 159–177.CrossRefGoogle Scholar
  15. Mantoura, R. F. C. andC. A. Llewellyn. 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography.Analytica Chimica Acta 151:297–313.CrossRefGoogle Scholar
  16. Paterson, D. M., R. M. Crawford, andC. Little. 1990. Subaerial exposure and changes in the stability of intertidal estuarine sediments.Estuarine, Coastal and Shelf Science 30:541–556.CrossRefGoogle Scholar
  17. Paterson, D. M., T. J. Tolhurst, J. A. Kelly, C. Honeywill, E. M. G. T. de Deckere, V. Huet, S. A. Shayler, K. S. Black, J. de Brouwer, andI. Davidon. 2000. Variations in sediment properties, Skeffling mudflat. Humber estuary, U.K..Continental Shelf Research 20:1373–1396.CrossRefGoogle Scholar
  18. Paterson, D. M., M. L. Yallop, andC. George. 1994. Spatial variability in sediment erodibility on the island of Texel, p. 107–120.In W. E. Krumbein, D. M. Paterson, and L. Stal (eds.), Biostabilization of Sediments. Verlag, Oldenburg, Germany.Google Scholar
  19. Perkins, R. G., G. J. C. Underwood, V. Brotas, G. C. Snow, B. Jesus, andL. Ribeiro. 2001. Responses of microphytobenthos to light: Primary production and carbohydrate allocation over an emersion period.Marine Ecology Progress Series 223:101–112.CrossRefGoogle Scholar
  20. Pinckney, J. andR. G. Zingmark. 1991. Effects of tidal stage and sun angles on intertidal benthic microalgal productivity.Marine Ecology Progress Series 76:81–89.CrossRefGoogle Scholar
  21. Riethmüller, R., J. H. M. Hakvoort, M. Heineke, K. Heymann, H. Kühl, andG. Witte. 1998. Relating erosion shear stress to tidal flat colour, p. 283–293.In K. S. Black, D. M. Paterson, and A. Cramp (eds.), Sedimentary Processes in the Intertidal Zone, Volume 139. Geological Society, London, U.K.Google Scholar
  22. Riethmüller, R., M. Heineke, H. Kühl, andR. Keuker-Rüdiger. 2000. Chlorophylla concentration as an index of sediment stabilization by microphytobenthos?.Continental Shelf Research 20:1351–1372.CrossRefGoogle Scholar
  23. Santos, P. J. P., J. Castel, andL. P. Souza-Santos. 1996. Spatial distribution and dynamics of microphytobenthos biomass in the Gironde estuary (France).Oceanologica Acta 20:549–556.Google Scholar
  24. Smith, D. J. andG. J. C. Underwood. 1998. Exopolymer production by intertidal epipelic diatoms.Limnology and Oceanography 43:1578–1591.Google Scholar
  25. Staats, N., E. M. G. T. de Deckere, B. de Winder, andL. J. Stal. 2001. Spatial patterns of benthic diatoms, carbohydrates and mud on a tidal flat in the Ems-Dollard estuary.Hydrobiologia 448:107–115.CrossRefGoogle Scholar
  26. Staats, N., L. J. Stal, B. de Winder, andL. R. Mur. 2000a. Oxygenic photosynthesis as driving process in exopolysaccharide production of benthic diatoms.Marine Ecology progress Series 193:261–269.CrossRefGoogle Scholar
  27. Staats, N., L. J. Stal, andL. R. Mur. 2000b. Exopolysaccharide production by the epipelic diatomCylindrotheca closterium: Effects of nutrient conditions.Journal of Experimental Marine Biology and Ecology 249:13–27.CrossRefGoogle Scholar
  28. Stal, L. 1994. Microbial mats: Ecophysiological interactions related to biogenic sediment stabilization, p. 41–53.In W. E. Krumbein, D. M. Paterson, and L. Stal (eds.), Biostabilization of Sediments, Verlag, Oldenburg, Germany.Google Scholar
  29. Sundbäch, K. 1984. Distribution of microbenthic chlorophylla and diatom species related to sediment characteristics.Ophelia Supplement 3:229–246.Google Scholar
  30. Sutherland, T. F., C. L. Amos, andJ. Grant. 1998a. The effect of buoyant biofilms on the erodibility of sublittoral sediments of a temperate microtidal estuary.Limnology and Oceanography 43:225–235.CrossRefGoogle Scholar
  31. Sutherland, T. F., J. Grant, andC. L. Amos. 1998b. The effect of carbohydrate production by the diatomNitzschia curvilineata on the erodibility of sediment.Limnology and Oceanography 43:65–72.Google Scholar
  32. Underwood, G. J. C. andD. M. Paterson. 1993. Seasonal changes in diatom biomass, sediment stability and biogenic stabilization in the Severn estuary.Journal of the Marine Biological Association of the United Kingdom 73:871–887.CrossRefGoogle Scholar
  33. Underwood, G. J. C., D. M. Paterson, andR. J. Parkes. 1995. The measurement of microbial carbohydrate exopolymers from intertidal sediments.Limnology and Oceanography 40: 1243–1253.Google Scholar
  34. Underwood, G. J. C. andD. J. Smith. 1998. Predicting epipelic exopolymer concentrations in intertidal sediments from sediment chlorophylla.Microbial Ecology 35:116–125.CrossRefGoogle Scholar
  35. Widdows, J., M. D. Brinsley, N. Bowley, andC. Barrett. 1998b. A benthic annular flume for in situ measurement of suspension feeding/biodeposition rates and erosion potential of intertidal cohesive sediment.Estuarine, Coastal and Shelf Science 46:27–38.CrossRefGoogle Scholar
  36. Widdows, J., M. D. Brinsley, and M. Elliott. 1998a. Use of an in situ flume to quantify particle flux (biodeposition rates and sediment erosion) for an intertidal mudflat in relation to changes in current velocity and benthic macrofauna, p. 85–97.In K. S. Black, D. M. Paterson, and A. Cramp (eds.), Sedimentary Processes in the Intertidal Zone. Geological Society, Special Publication 139. London, U.K.Google Scholar
  37. Widdows, J., M. D. Brinsley, P. N. Salkeld, andM. Elliott. 1998c. Use of annular flumes to determine the influence of current velocity and bivalves on material flux at the sedimentwater interface.Estuaries 21:552–559.CrossRefGoogle Scholar
  38. Widdows, J., M. D. Brinsley, P. N. Salkeld, andC. H. Lucas. 2000. Influence of biota on spatial and temporal variation in sediment erodibility and material flux on a tidal flat (Westerschelde, Netherlands).Marine Ecology Progress Series 194:23–37.CrossRefGoogle Scholar
  39. Yallop, M. L., B. de Winder, D. M. Paterson, andL. J. Stal. 1994. Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos.Estuarine, Coastal and Shelf Science 39:565–582.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2003

Authors and Affiliations

  1. 1.School of Ocean and Earth ScienceUniversity of Southampton, Southampton Oceanography CentreSouthamptonUK
  2. 2.Plymouth Marine LaboratoryPlymouthUK

Personalised recommendations