Folia Geobotanica

, Volume 39, Issue 1, pp 57–71 | Cite as

Relationship between plant species richness and biomass in an arid sub-alpine grassland of the central Himalayas, Nepal

  • Khem Raj Bhattarai
  • Ole R. Vetaas
  • John A. Grytnes


The hump-shaped relationship between plant species richness and biomass is commonly observed at fine scale for herbaceous vegetation in temperate climates. This relationship predicts that herbaceous species richness is highest at an intermediate level of biomass that corresponds to moderate competition or disturbance. However, this relationship has not previously been investigated in high arid sub-alpine mountain grasslands. We tested the humped-back prediction in the arid Trans-Himalayan mountain grassland with a seasonal grazing system. The study area is located in the bottom of a U-shaped valley, in the Manang district (3500 m a.s.l.). We sampled two hundred plots (1m × 1m) in two different types of pastures: common pasture and old field, which both have similar grazing practices. There was a significant unimodal relationship between species richness and biomass only in the common pasture, and when the two sites were analyzed together. The species turnover is estimated by DCA in standard deviation unit. The turnover was lower in the old field than in the common pasture. The unimodal relationship between plant species richness and biomass did not disappear after accounting for unknown environmental gradients expressed as DCA (detrended correspondence analysis) axes and spatial variables. The species richness is highest at 120 ± 40 g/m2. The results indicate that a hump-shaped relationship is also found in arid Trans-Himalayan grasslands.


Generalized linear model Gradient length Grazing Hump pattern Species composition 


Hara et al. (1978, 1982) Hara & Williams (1979) Press et al. (2000) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams P.A. (1995): Resource productivity-consumer species diversity: simple models of competition in spatially heterogeneous environments.Ecology 69: 1418–1433.CrossRefGoogle Scholar
  2. Al-Mufti M.M., Sydes C.L., Furness S.B., Grime J.P. &Band S.R. (1977): A quantitative analysis of shoot penology and dominance in herbaceous vegetation.J. Ecol. 65: 759–791.CrossRefGoogle Scholar
  3. Anonymous (1995):Iso-climatic map of mean annual precipitation. ICIMOD/MENRIS, Kathamndu, Nepal.Google Scholar
  4. Anonymous (1999):Climatological records of Nepal 1995–1996. Department of Hydrology and Metrology, Kathmandu, Nepal.Google Scholar
  5. Brocque A.F.L. &Buckney R.T. (2003): Species richness-environment relationships within coastal sclerophyll and mesophyll vegetation in Ku-ring-gai Chase National Park. New South Wales, Australia.Austral. Ecol. 28: 404–412.CrossRefGoogle Scholar
  6. Collins S.L., Glenn S.M. &Briggs J.M. (2003): Effect of local and regional process on plant species richness in tallgrass prairie.Oikos 99: 571–579.CrossRefGoogle Scholar
  7. Connell J.H. &Orias S.E. (1964): The ecological regulation of species diversity.Amer. Naturalist 98: 399–411.CrossRefGoogle Scholar
  8. Cornwell W.K. &Grubb P.J. (2003): Regional and local patterns in plant species richness with respect to resource availability.Oikos 100: 417–428.CrossRefGoogle Scholar
  9. Crawley M.J. (1993):GLIM for ecologists. Blackwell Scientific Publications, Oxford.Google Scholar
  10. Currie D.J. (1991): Energy and large-scale pattern of animal- and plant- species richness.Amer. Naturalist 13: 27–49.Google Scholar
  11. Darwin C. (1859):On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Murray, London.Google Scholar
  12. DeAngelis D.L. &Waterhouse J.C. (1987): Equilibrium and nonequilibrium concepts in ecological models.Ecol. Monogr. 57: 1–21.CrossRefGoogle Scholar
  13. Dobson A.J. (1990):An introduction to generalized linear models. Chapman & Hall, London.Google Scholar
  14. During H.J. &Willems J. H. (1984): Diversity model applied to chalk grassland.Vegetatio 57: 103–114.CrossRefGoogle Scholar
  15. Ejrnæs R. (2000): Can we trust gradient extracted by Detrended Correspondence Analysis?J. Veg. Sci. 11: 565–572.CrossRefGoogle Scholar
  16. Elseth G.D. &Baumgardner K.D. (1981):Population biology. Van Nostrand, New York.Google Scholar
  17. Ellis J.E. &Swift D.M. (1988): Stability of African pastoral ecosystem: alternate and implications for development paradigms.J. Range Managem. 41: 450–459.CrossRefGoogle Scholar
  18. Exner A., Willner W. &Grabherr G. (2002):Picea abies andAbies alba forests of the Austrian Alps: Numerical classification and ordination.Folia Geobot. 37: 383–402.CrossRefGoogle Scholar
  19. Fernandez-Gimenez M.E. &Allen-Diaz B. (1999): Testing a non-equilibrium model of range vegetation dynamics in Mongolia.J. Appl. Ecol. 6: 871–885.CrossRefGoogle Scholar
  20. Fox J.W. (2003): The long-term relationship between plant diversity and total plant biomass depends on the mechanism maintaining diversity.Oikos 102: 630–640.CrossRefGoogle Scholar
  21. Fynn R.W.S. &O’Connor T.G. (2000): Effect of stocking rate and rainfall on rangeland dynamics and cattle performance in a semi-arid savana, South Africa.J. Appl. Ecol. 37: 491–507.CrossRefGoogle Scholar
  22. García L.V., Marañón T., Moreno A. &Clements L. (1993): Above-ground biomass and species richness in a mediterranean salt marsh.J. Veg. Sci. 4: 417–424.CrossRefGoogle Scholar
  23. Gauch H.G. (1980): Rapid initial clustering of large data sets.Vegetatio 42: 103–111.CrossRefGoogle Scholar
  24. Gough L., Grace J.B. &Taylor K.L. (1994): The relationship between species richness and community biomass: the importance of environmental variables.Oikos 70: 271–279.CrossRefGoogle Scholar
  25. Grace J.B. (1999): The factors controlling species richness in herbaceous plant communities: an assessment.Perspectives Pl. Ecol., Evol. Syst. 2: 1–28.CrossRefGoogle Scholar
  26. Grace J.B. &Jutila H. (1999): The relationship between species richness and community biomass in grazed and ungrazed coastal meadows.Oikos 85: 398–408.CrossRefGoogle Scholar
  27. Grace J.B., Larry A. &Charles A. (2000): Factors associated with plant species richness in a coastal tall-grass prairie.J. Veg. Sci. 11: 443–452.CrossRefGoogle Scholar
  28. Grime J.P. (1973): Control of species richness in herbaceous vegetation.J. Environm. Managem. 1: 151–167.Google Scholar
  29. Grime J.P. (1979):Plant strategies and vegetation process. John Wiley & Sons, Chichester.Google Scholar
  30. Grime J.P. (1997): The humped-back model: a response to Oksanen.J. Ecol. 85: 97–98.CrossRefGoogle Scholar
  31. Gross K.L., Willig M.R., Gough L., Inouye R. &Cox S.B. (2000): Patterns of species density and productivity at different spatial scales in herbaceous plant communities.Oikos 89: 417–427.CrossRefGoogle Scholar
  32. Grytnes J.A. (2000): Fine-scale vascular plant species richness in different alpine vegetation types: relationship with biomass and cover.J. Veg. Sci. 11: 87–92.CrossRefGoogle Scholar
  33. Guo Q. &Berry W.L. (1998): Species richness and biomass: dissection of the humped- shaped relationship.Ecology 79: 2555–2559.Google Scholar
  34. Hara H., Chater A.O. &Williams H.J. (1982):An enumeration of flowering plants of Nepal III. British Museum Natural History, London.Google Scholar
  35. Hara H., Stearn W.T. &Williams H.J. (1978):An enumeration of flowering plants of Nepal I. British Museum Natural History, London.Google Scholar
  36. Hara H. &Williams H.J. (1979):An enumeration of flowering plants of Nepal II. British Museum Natural History, London.Google Scholar
  37. Hastie T.J. &Tibshirani R.J. (1990):Generalized additive models. Chapman & Hall, London.Google Scholar
  38. Hastie T.J. &Pregibon D. (1993): Generalised linear models. In:Chambers J.M. &Hastie T.J. (eds.),Statistical models, Chapman & Hall, London, pp. 195–247.Google Scholar
  39. Hill M.O. (1973): Reciprocal averaging: an eigenvector method of ordination.J. Ecol. 61: 237–249.CrossRefGoogle Scholar
  40. Hill M.O. &Gauch H.G. Jr (1980): Detrended correspondance analysis: An improved ordination technique.Vegetatio 42: 47–58.CrossRefGoogle Scholar
  41. Huston M.A. (1994):Biological diversity. The coexistence of species on changing landscapes. Cambridge University Press, Cambridge.Google Scholar
  42. Johnson K.H., Vogt K.A., Clark O.J., Schmitz &Vogt D.J. (1996): Biodiversity and productivity and stability of ecosystem.Trends Ecol. Evol. 11: 372–377.CrossRefGoogle Scholar
  43. Klimeš L. (1995): Small-scale distribution of species richness in a grassland (Bílé Karpaty Mts., Czech Republic).Folia Geobot Phytotax. 30: 499–510.Google Scholar
  44. Legendre P. (1993): Spatial autocorrelation: trouble or new paradigm?Ecology 74: 1659–1673.CrossRefGoogle Scholar
  45. Lepš J. &Šmilauer P. (2003):Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge.Google Scholar
  46. Ludwig J.A., Whiteford W.G. &Cornelius J.M. (1989): Effects of water, nitrogen and sulfur amendments on cover, density and size of Chihuahuan Desert ephemerals.J. Arid Environm. 16: 35–42.Google Scholar
  47. MacArthur R.H. &Pianka E.R. (1966): On the optimal use of patchy environment.Amer. Naturalist 100: 603–609.CrossRefGoogle Scholar
  48. Marañón T. &García L.V. (1997): The relationship between diversity and productivity in plant communities: factors and artefacts.J. Ecol. 85: 95–96.CrossRefGoogle Scholar
  49. May R.M. (1975): Patterns of species abundance and diversity. In:Cody M. &Dimond J.M. (eds.),Ecology and evolution of communities, Belknap Press, Haward University, Cambridge, pp. 81–120.Google Scholar
  50. McCullagh P. &Nelder J.A. (1989):Generalized linear models. Ed. 2. Chapman & Hall, London.Google Scholar
  51. Miehe G. (1982): Vegetationsgeographische Untersuchungen im Dhaulgiri in Annapurna-Himalaya.Diss. Bot. 66: i-xi, 1–224.Google Scholar
  52. Mittlebach G.G., Steiner C.F., Scheiner S.M., Gross K.L., Reynolds H.L., Waide R.B., Willig M.R., Dodson S.I. &Gough L. (2000): What is the observed relationship between species richness and productivity?Ecology 82: 2381–2396.CrossRefGoogle Scholar
  53. Moore D.R.J. &Keddy P.A. (1989): The relationship between species richness and standing crop in wetlands: the importance of scale.Vegetatio 79: 99–106.CrossRefGoogle Scholar
  54. Noy-Meir I. (1973): Desert ecosystems: environment and producers.Annual Rev. Ecol. Syst. 4: 25–51.CrossRefGoogle Scholar
  55. Oba G., Stenseth N.C. &Lusigi W.J. (2000): New perspectives on sustainable grazing management in arid zones of sub-Saharan Africa.Bioscience 50: 35–51.CrossRefGoogle Scholar
  56. Oba G., Vetaas O.R. &Stenseth N.C. (2001): Relationship between biomass and plant species richness in arid zone grazing lands.J. Appl. Ecol. 38: 836–845.CrossRefGoogle Scholar
  57. Økland R.H. &Eilertsen O. (1996): Dynamics of understory vegetation in an old-growth boreal coniferous forest, 1988–1993.J. Veg. Sci. 7: 747–767.CrossRefGoogle Scholar
  58. Oksanen J. (1996): Is the humped relationship between species richness and biomass an artefact due to plot size?J. Ecol. 84: 293–295.CrossRefGoogle Scholar
  59. Pohle P. (1990)Useful plants of Manang district: a contribution to the ethnobotany of the Nepal-Himalaya. Franz Steiner Verlag Wiesbaden GMBH, Stuttgart.Google Scholar
  60. Press J.R., Shrestha K.K. &Sutton D.A. (2000):Annotated checklist of the flowering plants of Nepal. The Natural History Museum, London.Google Scholar
  61. Ricklefs R.E. &Schluter D. (1993):Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.Google Scholar
  62. Rosenzweig M.L. (1992): Species diversity gradients. We know more and less than we thought.J. Mamm. 73: 715–730.CrossRefGoogle Scholar
  63. Rosenzweig M.L. (1995):Species diversity in space and time. University Press, Cambridge.Google Scholar
  64. Rydin H. &Barber K.E. (2001): Long-term and fine-scale coexistence of closely related species.Folia Geobot. 36: 53–61.Google Scholar
  65. Shmida A. &Ellner S. (1984): The coexistence of plant species with similar niches.Vegetatio 58: 29–55.Google Scholar
  66. Taylor D.R., Aarssen L.W. &Loehle C. (1990): On the relationship between r/K selection and environmental carrying capacity: a new habitat templet for plant life history strategies.Oikos 58: 239–250.CrossRefGoogle Scholar
  67. ter Braak C.J.F. (1995): Ordination. In:Jongman R.H.G., ter Braak C.J.F. &van Tongeren O.F.R. (eds.),Data analysis in community and landscape ecology, Cambridge University Press, Cambridge, pp. 91–173.Google Scholar
  68. ter Braak C.J.F. &Prentice I.C. (1986): A theory of Gradient analysis.Advances Ecol. Res. 18: 271–317.Google Scholar
  69. Tobler W.R. (1969): Geographical filters and their inverse.Geo. Anal. 1: 234–253.CrossRefGoogle Scholar
  70. Valentine J.W. (1976): Genetic strategies of adaptation. In:Ayala F.J. (ed.),Molecular evolution, Sinauer, Sunderland, pp. 78–94.Google Scholar
  71. van der Maarel E. (1997):Biodiversity: from babel to biosphere management. Opulus Press, Uppsala.Google Scholar
  72. van der Maarel E., van Drop P. &Rijntjes J. (1985): Vegetation succession on the dunes near Oostvoorne, The Netherlands, a comparison of the vegetation in 1959 and 1980.Vegetatio 58: 137–187.CrossRefGoogle Scholar
  73. Venterink H.O., Wassen M.J., Verkroost A.W.M. &de Ruiter P.C. (2003): Species richness-productivity patterns differ between N-, P-, and K-limited wetlands.Ecology 84: 2191–2199.CrossRefGoogle Scholar
  74. Vetaas O.R. (1993): Spatial and temporal vegetation changes along a moisture gradient in north-eastern Sudan.Biotropica 25: 164–175.CrossRefGoogle Scholar
  75. Virtanen R., Muotka T. &Saksa M. (2000): Species richness-standing crop relationship in stream bryophyte communities: pattern across multiple scales.J. Ecol. 89: 14–20.CrossRefGoogle Scholar
  76. Waide R.B., Willig M.R., Steiner C.F., Mittelbach G., Gough L., Dodson S. I., Juday G.P. &Parmenter R. (1999): The relationship between productivity and species richness.Annual Rev. Ecol. Syst. 30: 257–300.CrossRefGoogle Scholar
  77. Walker J. &Peet R.K. (1983): Composition and species diversity of pine-waregrass savannah of the Green Swamp, North Carolina.Vegetatio 55: 163–179.CrossRefGoogle Scholar
  78. Wheeler B.D. &Giller K.E. (1982): Species richness of herbaceous fen vegetation in Broadland, Norfolk in relation to the quantity of above ground plant material.J. Ecol. 70: 179–200.CrossRefGoogle Scholar
  79. Wheeler B.D. &Shaw S.C. (1991): Above-ground crop mass and species richness of the principal types of herbaceous rich-fen vegetation of lowland England and Wales.J. Ecol. 79: 285–302.CrossRefGoogle Scholar
  80. Whittaker R.J., Willis K.J. &Field R. (2001): Scale and species richness: towards a general, hierachical theory of species diversity.J. Biogeogr. 28: 453–470.CrossRefGoogle Scholar
  81. Willems J.H., Peet R.K. &Bik L. (1993): Change in chalk-grassland structure and species richness resulting from selective nutrient additions.J. Veg. Sci. 4: 203–212.CrossRefGoogle Scholar
  82. Wilson S.D. &Keddy P.A. (1989): Species richness survivorship and biomass accumulation along an environmental gradient.Oikos 53: 375–380.CrossRefGoogle Scholar
  83. Wilson J.B., Steel J.B., Newman J.E. &King McG. W. (2000): Quantitative aspects of community structure examined in a semi-arid grassland.J. Ecol. 88: 749–756.CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2004

Authors and Affiliations

  • Khem Raj Bhattarai
    • 1
  • Ole R. Vetaas
    • 2
  • John A. Grytnes
    • 1
  1. 1.Department of BotanyUniversity of BergenBergenNorway
  2. 2.Centre for Development StudiesUniversity of BergenBergenNorway

Personalised recommendations