Folia Geobotanica

, Volume 38, Issue 4, pp 429–442 | Cite as

Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient

  • Milan ChytrýEmail author
  • Lubomír Tichý
  • Jan Roleček


We investigated the relationship between soil pH/calcium content and species richness of vascular plants in seven broadly defined Central European vegetation types, using Ellenberg indicator values for soil reaction and a phytosociological data set of 11,041 vegetation sample plots from the Czech Republic. The vegetation types included (A) broad-leaved deciduous forests, (B) meadows, (C) dry grasslands, (D) reed-bed and tall-sedge vegetation, (E) fens and transitional mires, (F) perennial synanthropic vegetation and (G) annual synanthropic vegetation. Relationships between local species richness (alpha diversity) and pH/calcium were positive for vegetation types A and C, negative for D and G, unimodal for E, and insignificant for B and F. Ellenberg soil reaction values explained 37% of variation in local species richness for vegetation type E, 24% for A, 13% for D, but only less than 4% for the others. Species pool size, i.e., the number of species that can potentially occur in a given habitat, was calculated for each plot using Beals index of sociological favourability applied to a large phytosociological database. For most vegetation types, the relationships between species pool size and pH/calcium were similar to the relationships between local species richness and pH/calcium, with the exception of meadows (weak unimodal) and perennial synanthropic vegetation (weak negative).

These patterns suggest that for those types of Central European vegetation that developed independently of human influence in the Pleistocene or early Holocene (dry grasslands, deciduous forests), there are larger pools of calcicole than calcifuge species. This pattern is also found at the level of local species richness, where it is, however, less clearly pronounced, possibly due to the predominance of a few widespread and generalist calcifuges in acidic habitats. The unimodal pattern found in mires may result from similar underlying mechanisms, but in high pH environments mineral-rich spring waters probably decrease species richness by having toxic effects on plant growth. By contrast, vegetation types developed under direct human influence (meadows, synathropic vegetation) show weak negative or no relationships of local species richness or species pool to pH/calcium gradient. These results support the hypothesis ofPärtel (Ecology 83: 2361–2366, 2002) andEwald (Folia Geobot. 38: 357–366, 2003), that the modern calcicole/calcifuge disparity in the species pool of Central European flora has resulted from historical and evolutionary processes that took place on high pH soils. In the Pleistocene, calcareous soils dominated both the dry continental landscapes of Central Europe and glacial refugia of temperate flora, which were mostly situated in southern European mountain ranges with abundant limestone and dolomite. The negative pattern of species richness along the pH/calcium gradient found in reed-bed and tall-sedge vegetation, however, is not consistent with this historical explanation.


Calcareous Calcicole Calcifuge Ellenberg indicator values Historical and evolutionary processes Soil acidity Species pool Vascular plants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beals E.W. (1984): Bray-Curtis-ordination: an effective strategy for analysis of multivariate ecological data.Advances Ecol. Res. 14: 1–55.CrossRefGoogle Scholar
  2. Behrensmeyer A.K., Damuth J., DiMichele W., Potts R., Sues H.D. &Wing S. (1992):Terrestrial ecosystems through time. Chicago University Press, Chicago.Google Scholar
  3. Berglund B.E., Birks H.J.B., Ralska-Jasiewiczowa M. &Wright H.E. (1996):Palaeoecological events during the last 15 000 years. Wiley, Chichester.Google Scholar
  4. Brosofske K.D., Chen J. &Crow T.R. (2001): Understory vegetation and site factors: implications for a managed Wisconsin landscape.Forest Ecol. Managem. 146: 75–87.CrossRefGoogle Scholar
  5. Brunet J., Falkengren-Grerup U., Rühling A. &Tyler G. (1997): Regional differences in floristic change in South Swedish oak forests as related to soil chemistry and land use.J. Veg. Sci. 8: 329–336.CrossRefGoogle Scholar
  6. Caley M.J. &Schluter D. (1997): The relationship between local and regional diversity.Ecology 78: 70–80.CrossRefGoogle Scholar
  7. Chytrý M. (2001): Phytosociological data give biased estimates of species richness.J. Veg. Sci. 12: 439–444.CrossRefGoogle Scholar
  8. Chytrý M. &Rafajová M. (2003): Czech National Phytosociological Database: basic statistics of the available vegetation-plot data.Preslia 75: 1–15.Google Scholar
  9. Cornell H.V. &Lawton J.H. (1992): Species interactions, local and regional processes, and limits to the richness of ecological communities — a theoretical perspective.J. Anim. Ecol. 61: 1–12.CrossRefGoogle Scholar
  10. Diekmann M. &Lawesson J.E. (1999): Shifts in ecological behaviour of herbaceous forests species along a transect from northern Central to North Europe.Folia Geobot. 34: 127–141.Google Scholar
  11. Dumortier M., Butaye J., Jacquemyn H., Van Camp N., Lust N. &Hermy M. (2002): Predicting vascular plant species richness of fragmented forests in agricultural landscapes in central Belgium.Forest Ecol. Managem. 158: 85–102.CrossRefGoogle Scholar
  12. Dupré C., Wessberg C. &Diekmann M. (2002): Species richness in deciduous forests: Effects of species pools and environmental variables.J. Veg. Sci. 13: 505–516.CrossRefGoogle Scholar
  13. Ellenberg H., Weber H.E., Düll R., Wirth W., Werner W. &Paulißen D. (1992): Zeigerwerte von Pflanzen in Mitteleuropa. Ed. 2.Scripta Geobot. 18: 1–258.Google Scholar
  14. Eriksson O. (1993): The species-pool hypothesis and plant community diversity.Oikos 68: 371–374.CrossRefGoogle Scholar
  15. Ewald J. (2001): Der Beitrag pflanzensoziologischer Datenbanken zur vegetationsökologischen Forschung.Ber. Reinhold-Tüxen-Ges. 13: 53–69.Google Scholar
  16. Ewald J. (2002): A probabilistic approach to estimating species pools from large compositional matrices.J. Veg. Sci. 13: 191–198.CrossRefGoogle Scholar
  17. Ewald J. (2003): The calcareous riddle: Why are there so many calciphilous species in the Central European flora?Folia Geobot. 38: 357–366 (this issue).Google Scholar
  18. Exner A., Willner W. &Grabherr G. (2002):Picea abies andAbies alba forests of the Austrian Alps: numerical classification and ordination.Folia Geobot. 37: 383–402.Google Scholar
  19. Glaser P.H., Janssens J.A. &Siegel D.I. (1990): The response of vegetation to chemical and hydrological gradients in the Lost River peatland, northern Minnesota.J. Ecol. 78: 1021–1048.CrossRefGoogle Scholar
  20. Gough L., Grace J.B. &Taylor K.L. (1994): The relationship between species richness and community biomass: the importance of environmental variables.Oikos 70: 271–279.CrossRefGoogle Scholar
  21. Gough L, Shaver G.R., Carroll J., Royer D.L. &Laundre J.A. (2000): Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH.J. Ecol. 88: 54–66.CrossRefGoogle Scholar
  22. Gould W. &Walker M.D. (1999): Plant communities and landscape diversity along a Canadian Arctic river.J. Veg. Sci. 10: 537–548.CrossRefGoogle Scholar
  23. Grace J.B. (1999): The factors controlling species density in herbaceous plant communities.Perspect. Pl. Ecol. Evol. Syst. 3: 1–28.CrossRefGoogle Scholar
  24. Grace J.B. (2001): Difficulties with estimating and interpreting species pools and the implications for understanding patterns of diversity.Folia Geobot. 36: 71–83.Google Scholar
  25. Grime J.P. (1973): Control of species density in herbaceous vegetation.J. Environm. Managem. 1: 151–167.Google Scholar
  26. Grime J.P. (1979):Plant strategies and vegetation processes. Wiley, Chichester.Google Scholar
  27. Grubb P.J. (1987): Global trends in species-richness in terrestrial vegetation: a view from the northern hemisphere. In:Gee J.H.R. &Giller P.S. (eds.),Organization of communitiesd Past and present, Blackwell, Oxford, pp. 99–118.Google Scholar
  28. Gunnarsson U., Rydin H. &Sjörs H. (2000): Diversity and pH changes after 50 years on the boreal mire Skattlosbergs Stormosse, Central Sweden.J. Veg. Sci. 11: 277–286.CrossRefGoogle Scholar
  29. Hájková P. &Hájek M. (2003): Species richness and above-ground biomass of poor and calcareous spring fens in the flysch West Carpathians, and their relationship to water and soil chemistry.Preslia 75: 271–287.Google Scholar
  30. Hennekens S.M. &Schaminée J.H.J. (2001): TURBOVEG, a comprehensive data base management system for vegetation data.J. Veg. Sci. 12: 589–591.CrossRefGoogle Scholar
  31. Herben T. (2000): Correlation between richness per unit area and the species pool cannot be used to demonstrate the species pool effect.J. Veg. Sci. 11: 123–126.CrossRefGoogle Scholar
  32. Hill M.O. &Carey P.D. (1997): Prediction of yield in the Rothamsted Park Grass Experiment by Ellenberg indicator values.J. Veg. Sci. 8: 579–586.CrossRefGoogle Scholar
  33. Huntley B. &Birks H.J.B. (1983):An atlas of past and present pollen maps for Europe: 0–13 000 years ago. Cambridge University Press, Cambridge.Google Scholar
  34. Huston M.A. (1994).Biological diversity. The coexistence of species on changing landscapes. Cambridge Univ. Press, Cambridge.Google Scholar
  35. Lang G. (1994):Quartäre Vegetationsgeschichte Europas. G. Fischer, Jena, Stuttgart, New York.Google Scholar
  36. Lepš J. (2001): Species-pool hypothesis: limits to its testing.Folia Geobot. 36: 45–52.Google Scholar
  37. McCune B. (1994): Improving community analysis with the Beals smoothing function.Écoscience 1: 82–86.Google Scholar
  38. Moravec J., Balátová-Tuláčková E., Blažková D., Hadač E., Hejný S., Husák Š., Jeník J., Kolbek J., Krahulec F., Kropáč Z., Neuhäusl R., Rybníček K., Řehořek V. & Vicherek J. (1995): Rostlinná společenstva České republiky a jejich ohrožení (Red list of plant communities of the Czech Republic and their endangerment). Ed. 2.Severočeskou Přír., Suppl. 1995: 1–206.Google Scholar
  39. Niklfeld H. (1972):Der niederösterreichische Alpenostrand — ein Glazialrefugium montaner Pflanzensippen. Verein zum Schutze der Alpenpflanzen und -Tiere, München.Google Scholar
  40. Olde Venterink H., Wassen M.J., Belgers J.D.M. &Verhoeven J.T.A. (2001): Control of environmental variables on species density in fens and meadows: importance of direct effects and effects through community biomass.J. Ecol. 89: 1033–1040.CrossRefGoogle Scholar
  41. Pärtel M. (2002): Local plant diversity patterns and evolutionary history at the regional scale.Ecology 83: 2361–2366.Google Scholar
  42. Pärtel M., Zobel M., Zobel K. &van der Maarel E. (1996): The species pool and its relation to species richness: evidence from Estonian plant communities.Oikos 75: 111–117.CrossRefGoogle Scholar
  43. Peet R.K. &Christensen N.L. (1980): Hardwood forest vegetation of the North Carolina piedmont.Veröff. Geobot. Inst. ETH Stiftung Rübel, Zürich 69: 14–39.Google Scholar
  44. Prinzing A., Durka W., Klotz S. &Brandl R. (2001): The niche of higher plants: evidence for phylogenetic conservatism.Proc. Roy. Soc. London, Ser. B, Biol. Sci. 268: 2383–2389.CrossRefGoogle Scholar
  45. Pyšek P., Sádlo J. &Mandák B. (2002): Catalogue of alien plants of the Czech Republic.Preslia 74: 97–186.Google Scholar
  46. Rey Benayas J.M. (1995): Patterns of diversity in the strata of boreal montane forest in British Columbia.J. Veg. Sci. 6: 95–98.CrossRefGoogle Scholar
  47. Rey Benayas J.M. &Scheiner S.M. (1993): Diversity patterns of wet meadows along geochemical gradients in central Spain.J. Veg. Sci. 4: 103–108.CrossRefGoogle Scholar
  48. Ricklefs R.E. &Schluter D. (1993):Species diversity in ecological communities. Historical and geographical perspectives. Univ. Chicago Press, Chicago, London.Google Scholar
  49. Roberts N. (1998):The Holocene. An environmental history. Ed. 2. Blackwell, Oxford.Google Scholar
  50. Rosenzweig M.L. (1995):Species diversity in space and time. Cambridge University Press, Cambridge.Google Scholar
  51. Schaffers A.P. &Sýkora K.V. (2000): Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements.J. Veg. Sci. 11: 225–244.CrossRefGoogle Scholar
  52. Silvertown J.W. (1980): The dynamics of a grassland ecosystem: botanical equilibrium in the Park grass experiment.J. Appl. Ecol. 17: 491–504.CrossRefGoogle Scholar
  53. Sokal R.R. &Rohlf F.J. (1995):Biometry. Ed. 3. W.H. Freeman and Company, New York.Google Scholar
  54. StatSoft Inc. (2001):STATISTICA (data analysis software system), version 6. Scholar
  55. Taylor D.R., Aarsen L.W. &Loehle C. (1990): On the relationship between r/K selection and environmental carrying capacity: a new habitat templet for plant life history strategies.Oikos 58: 239–250.CrossRefGoogle Scholar
  56. Tichý L. (2002): JUICE, software for vegetation classification.J. Veg. Sci. 13: 451–453.CrossRefGoogle Scholar
  57. Tilman D. &Olff H. (1991): An experimental study of the effects of pH and nitrogen on grassland vegetation.Acta Oecol. 12: 427–441.Google Scholar
  58. Vitt D.H., Li Y. &Belland R.J. (1995): Patterns of bryophyte diversity in peatlands of continental western Canada.Bryologist 98: 218–227.CrossRefGoogle Scholar
  59. Walker D.A., Bockheim J.G., Chapin F.S., III,Eugster W., Nelson F.E. &Ping C.L. (2001): Calcium-rich tundra, wildlife, and the “Mammoth Steppe”.Quatern. Sci. Rev. 20: 149–163.CrossRefGoogle Scholar
  60. Wamelink G.W.W., Joosten V., van Dobben H.F. &Berendse F. (2002): Validity of Ellenberg indicator values judged from physico-chemical field measurements.J. Veg. Sci. 13: 269–278.CrossRefGoogle Scholar
  61. Wilson J.B. &Anderson B.J. (2001): Species-pool relations: like a wooden light bulb?Folia Geobot. 36: 35–44.Google Scholar
  62. Zobel M. (1992): Plant species coexistence: the role of historical, evolutionary and ecological factors.Oikos 65: 314–320.CrossRefGoogle Scholar
  63. Zobel M. (1997): The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence?Trends Ecol. Evol. 12: 266–269.CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2003

Authors and Affiliations

  1. 1.Department of BotanyMasaryk UniversityBrnoCzech Republic

Personalised recommendations