Folia Geobotanica

, Volume 40, Issue 2–3, pp 217–229 | Cite as

Interactions between the hemiparasitic angiospermRhinanthus minor and its hosts: From the cell to the ecosystem

  • Duncan D. CameronEmail author
  • Jun-Kwon Hwangbo
  • Aidan M. Keith
  • Jean-Michel Geniez
  • Daniel Kraushaar
  • Jenny Rowntree
  • Wendy E. Seel


Parasitic plants can significantly influence the species to which they attach. The host response is variable however, and ranges from death of the host to no detectable effects in terms of both growth and physiology. The parasite can directly influence its hosts through resource abstraction, and indirectly by influencing inter- and intra-specific interactions. Abiotic factors interact with these direct and indirect effects to moderate the potential outcome of the host parasite interaction. This paper sets out to review a series of experiments that have been undertaken in our laboratory over a number of years that examine these effects and help us to understand mechanisms underpinning the variability in host response.


Biotic and abiotic effects Direct and indirect effects Parasitic plant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Callaway R.M. &Pennings S.C. (1998): Impact of a parasitic plant on the zonation of two salt marsh perennials.Oecologia 114: 100–105.CrossRefGoogle Scholar
  2. Cameron D.D. (2004):A role for differential host resistance to the hemiparasitic angiosperm, Rhinanthus minorL. in determining the structure of host plant communities? PhD Thesis, University of Aberdeen, Aberdeen.Google Scholar
  3. Cameron D.D. &Seel W.E. (2003): Variable resistance to the grassland hemi-parasitic angiospermRhinanthus minor, and its consequences for community composition.Comparative Biochem. Physiol. Part A: Molec. Integrative Physiol. 134/A [3 Suppl.]: S158-S159.Google Scholar
  4. Davies D.M. &Graves J.D. (2000): The impact of phosphorus on interactions of the hemiparasitic angiospermRhinanthus minor and its hostLolium perenne.Oecologia 124: 100–106.CrossRefGoogle Scholar
  5. Davies D.M., Graves J.D., Elias C.O. &Williams P.J. (1997): The impact ofRhinanthus spp. On sward productivity and composition: Implications for the restoration of species-rich grasslands.Biol. Conservation 82: 87–93.CrossRefGoogle Scholar
  6. Dorr I. (1997): HowStriga parasitizes its host: A TEM and SEM study.Ann. Bot. (Oxford) 79: 463–472.CrossRefGoogle Scholar
  7. Frost D.L., Gurney A.L., Press M.C. &Scholes J.D. (1997):Striga hermonthica reduces photosynthesis inSorghum: The importance of stomatal limitations and a potential role for ABA?Pl. Cell Environm. 20: 483–492.CrossRefGoogle Scholar
  8. Genty B., Briantais J.M. &Baker N.R. (1989): The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence.Biochim. Biophys. Acta 990: 87–92.Google Scholar
  9. Gibson C.C. &Watkinson A.R. (1989): The host range and selectivity of a parasitic plant —Rhinanthus minor L.Oecologia 78: 401–406.CrossRefGoogle Scholar
  10. Gibson C.C. &Watkinson A.R. (1991): Host selectivity and the mediation of competition by the root hemiparasiteRhinanthus minor.Oecologia 86: 81–87.CrossRefGoogle Scholar
  11. Gibson C.C. &Watkinson A.R. (1992): The role of the hemiparasitic annualRhinanthus minor in determining grassland community structure.Oecologia 89: 62–68.CrossRefGoogle Scholar
  12. Graves J.D., Press M.C., Smith S. &Stewart G.R. (1992): The carbon canopy economy of the association between cowpea and the parasitic angiospermStriga gesnerioides.Pl. Cell Environm. 15: 283–288.CrossRefGoogle Scholar
  13. Gurney A.L., Grimanelli D., Kanampiu F., Hoisington D., Scholes J.D. &Press M.C. (2003): Novel sources of resistance toStriga hermonthica inTripsacum dactyloides, a wild relative of maize.New Phytol. 160: 557–568.CrossRefGoogle Scholar
  14. Gurney A.L., Press M.C. &Ransom J.K. (1995): The parasitic angiospermStriga hermonthica can reduce photosynthesis of its sorghum and maize hosts in the field.J. Exp. Bot. 46: 1817–1823.CrossRefGoogle Scholar
  15. Gurney A.L., Press M.C. &Scholes J.D. (1999): Infection time and density influence the response of sorghum to the parasitic angiospermStriga hermonthica.New Phytol. 143: 573–580.CrossRefGoogle Scholar
  16. Hector A., Dobson K., Minns A., Bazeley-White E. &Lawton J.H. (2001): Community diversity and invasion resistance: An experimental test in a grassland ecosystem and a review of comparable studies.Ecol. Res. 16: 819–831.CrossRefGoogle Scholar
  17. Hibberd J.M., Quick W.P., Press M.C., Scholes J.D. &Jeschke W.D. (1999): Solute fluxes from tobacco to the parasitic angiospermOrobanche cernua and the influence of infection on host carbon and nitrogen relations.Pl. Cell Environm. 22: 937–947.CrossRefGoogle Scholar
  18. Hodgeson J.F. (1973):Aspects of the carbon nutrition of angiospermous parasites. PhD. Thesis, University of Sheffield, Sheffield.Google Scholar
  19. Hwangbo J. (2000):Interactions between a facultative annual root hemiparasite, Rhinanthus minor(L.) and its hosts. PhD. Thesis, University of Aberdeen, Aberdeen.Google Scholar
  20. Jiang F, Jeschke W.D. &Hartung W. (2003): Water flows in the parasitic associationRhinanthus minor-Hordeum vulgare.J. Exp. Bot. 54: 1985–1993.PubMedCrossRefGoogle Scholar
  21. Joshi J., Matthies D. &Schmid B. (2000): Root hemiparasites and plant diversity in experimental grassland communities.J. Ecol. 88: 634–644.CrossRefGoogle Scholar
  22. Keith A.M., Cameron D.D. &Seel W.E. (2004): Spatial interactions between the hemiparasitic angiospermRhinanthus minor and its host are species-specific.Funct. Ecol. 18: 435–442.CrossRefGoogle Scholar
  23. Marvier M.A. (1998): Parasite impacts on host communities: Plant parasitism in a California coastal prairie.Ecology 79: 2616–2623.Google Scholar
  24. Peterson C.A. &Perumalla C.J. (1990): A survey of angiosperm series to detect hypodermal Casparian. II, Roots with a multiseriat hypodermis or epidermis.Bot. J. Linn. Soc. 103: 113–125.CrossRefGoogle Scholar
  25. Press M.C., Smith S. &Stewart G.R. (1991): Carbon acquisition and assimilation in parasitic plants.Funct. Ecol. 5: 278–283.CrossRefGoogle Scholar
  26. Quested H.M., Press M.C., Callaghan T.V. &Cornelissen J.H.C. (2002): The hemiparasitic angiospermBartsia alpina has the potential to accelerate decomposition in sub-arctic communities.Oecologia 130: 88–95.Google Scholar
  27. Ramlan M.F. &Graves J.D. (1996): Estimation of the sensitivity to photoinhibition inStriga hermonthica-infected sorghum.J. Exp. Bot. 47: 71–78.CrossRefGoogle Scholar
  28. Riopel J.L. &Timko M.P. (1995): Haustorial initiation and differentiation. In:Press M.C. &Graves J.D. (eds.),Parasitic plants, Chapman and Hall, London, pp. 39–73.Google Scholar
  29. Seel W.E., Cooper R.E. &Press M.C. (1993): Growth, gas-exchange and water-use efficiency of the facultative hemiparasiteRhinanthus minor associated with hosts differing in foliar nitrogen concentration.Physiol. Pl. 89: 64–70.CrossRefGoogle Scholar
  30. Seel W.E. &Press M.C. (1996): Effects of repeated parasitism byRhinanthus minor on the growth and photosynthesis of a perennial grass,Poa alpina.New Phytol. 134: 495–502.CrossRefGoogle Scholar
  31. Showemimo F.A., Kimbeng C.A. &Alabi S.O. (2002): Genotypic response of sorghum cultivars to nitrogen fertilization in the control ofStriga hermonthica.Crop Protect. 21: 867–870.CrossRefGoogle Scholar
  32. Smith L.H., Keys A.J. &Evans M.C.W. (1995):Striga hermonthica decreases photosynthesis inZea mays through effects on leaf cell structure.J. Exp. Bot. 46: 759–765.CrossRefGoogle Scholar
  33. Svensson B.M. &Carlsson B.A. (2004): Significance of time of attachment, host type, and neighbouring hemiparasites in determining fitness in two endangered grassland hemiparasites.Ann. Bot. Fenn. 41: 63–75.Google Scholar
  34. Taylor A., Martin J. &Seel W.E. (1996): Physiology of the parasitic association between maize and witchweed (Striga hermonthica): Is ABA involved?J. Exp. Bot. 47: 1057–1065.CrossRefGoogle Scholar
  35. Watling J.R. &Press M.C. (2001): Impacts of infection by parasitic angiosperms on host photosynthesis.Pl. Biol. 3: 244–250.CrossRefGoogle Scholar
  36. von Caemmerer S. &Furbank R.T. (2003): The C-4 pathway: An efficient CO2 pump.Photosynthesis Res. 77: 191–207.CrossRefGoogle Scholar

Copyright information

© Institute of Botany 2005

Authors and Affiliations

  • Duncan D. Cameron
    • 1
    Email author
  • Jun-Kwon Hwangbo
    • 1
    • 2
  • Aidan M. Keith
    • 1
    • 3
  • Jean-Michel Geniez
    • 1
    • 4
  • Daniel Kraushaar
    • 1
  • Jenny Rowntree
    • 5
  • Wendy E. Seel
    • 1
  1. 1.School of Biological Sciences (Plant and Soil Science)University of AberdeenUnited Kingdom
  2. 2.Radiation Application Research TeamKorea Atomic Energy Research Institute (KAERI)TaejeonKorea
  3. 3.Centre for Ecology and Hydrology — Banchory, Hill of Brathens, Glassel, Banchory, KincardineshireUnited Kingdom
  4. 4.Ecole Nationale Superieure Agronomique de MontpellierMontpellier Cedex 1France
  5. 5.Micropropagation UnitRoyal Botanic Gardens, Kew, RichmondSurreyUnited Kingdom

Personalised recommendations