Folia Geobotanica

, Volume 40, Issue 2–3, pp 205–216 | Cite as

Effects of climate change on parasitic plants: the root hemiparasiticOrobanchaceae

  • Gareth K. Phoenix
  • Malcolm C. Press
Article

Abstract

Climate change may affect hemisparasiticOrobanchaceae (ex-Scrophulariaceae) both directly through impacts on hemiparasite physiology and indirectly through impacts on host plants. This dual action suggests particular sensitivity of the parasite to climate change and any associated impacts on hosts and other members of the community. While little research has addressed the responses of parasitic plants to climate change in natural environments, impacts are predicted from controlled environment studies together with a knowledge of the key ecophysiological traits of hemiparasiticOrobanchaceae, in particular ofStriga species, which are important weeds in semi-arid tropical agro-ecosystems, andRhinanthus species, which can be important components of (principally) grassland communities in the northern temperate zone. The main mode of important components of (principally) grassland communities in the northern temperate zone. The main mode of action of both elevated CO2 and warming will be through changes in photosynthesis and stomatal functioning. Enhanced photosynthesis of the hemiparasite and host will increase parasite carbon gains but may also increase the demand for host mineral nutrients. Mineral nutrition may, therefore, mediate the impacts of climate change on host-parasite associations. The relative insensitivity of hemiparasite stomata to elevated CO2 suggests that high stomatal conductances may be maintained and thus solute uptake may become limited by soil drying driven by higher rates of evapotranspiration and reduced precipitation. Climate change impacts on host-parasite interactions at the individual level will ultimately affect hemiparasite impacts at the community level. Community impacts will be greatest where climate change considerably favours hemiparasite populations or, conversely, causes them to disappear from communities where they were formerly abundant. Impacts will further be mediated by climate impacts on hosts, and the natural enemies of hosts and parasites alike. Further, the wide host range of many root hemiparasitic plants may facilitate migration of their populations through new communities under a changing climate.

Keywords

Carbon dioxide Drought Global warming Host-hemiparasite interactions Precipitation Transpiration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams P., Thomas J.C., Vernon D.M., Bohnert H.J. &Jensen R.G. (1992): Distinct cellular and organismic responses to salt stress.Pl. Cell Physiol. 33: 1215–1223.Google Scholar
  2. Adler L.S. (2000): Alkaloid uptake increases fitness in a hemiparasitic plant via reduced herbivory and increased pollination.Amer. Naturalist 156: 92–99.CrossRefGoogle Scholar
  3. Arslanian R.L., Harris G.H. &Stermitz F.R. (1990): New quinolizidine alkaloids fromLupinus argenteus and its hosted root parasiteCastilleja sulphurea. Stereochemistry and conformation of some naturally occurring cyclic carbolamides.J. Org. Chem. 55: 1204–1210.CrossRefGoogle Scholar
  4. Ayres M.P. &Lombardero M.J. (2000): Assessing the consequences of global; change for forest disturbance from herbivores and pathogens.Sci. Total Environm. 262: 263–268.CrossRefGoogle Scholar
  5. Bezemer T.M. &Jones T.H. (1998): Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects.Oikos 82: 212–222.CrossRefGoogle Scholar
  6. Bouwmeester H.J., Matusova R., Zhonghui S. &Beale M.H. (2003): Secondary metabolite signalling in host-parasite plant interactions.Curr. Opin. Pl. Biol. 6: 358–364.CrossRefGoogle Scholar
  7. Callaway R.M. &Pennings S.C. (1998): Impact of a parasitic plant on the zonation of two salt marsh perennials.Oecologia 114: 100–105.CrossRefGoogle Scholar
  8. Ceulemans R. &Mousseau M. (1994): Effects of elevated CO2 on woody plants.New Phytol. 127: 425–446.CrossRefGoogle Scholar
  9. Coviella C.E. &Trumble J.T. (1999): Effects of elevated atmospheric carbon dioxide on insect-plant interactions.Conservation Biol. 13: 700–712.CrossRefGoogle Scholar
  10. Cubasch U. et al. (2001): Projections of future climate change. In:Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K. &Johnson C.A. (eds.),Climate change 2001: The scientific basis, Cambridge University Press, Cambridge, pp. 525–582.Google Scholar
  11. Davies D.M., Graves J.D., Elias C.O. &Williams P.J. (1997): The impact ofRhinathus spp. on sward productivity and composition: implications for the restoration of species-rich grasslands.Biol. Conservation 82: 98–93.CrossRefGoogle Scholar
  12. Drake B.G., Gonzalez-Meler M.A. &Long S.P. (1997): More efficient plants: a consequence of rising CO2?Annual Rev. Pl. Physiol. Pl. Molec. Biol. 48: 609–639.CrossRefGoogle Scholar
  13. Fitter A. (1999): Roots as dynamics systems: the developmental ecology of roots and root systems. In:Press M.C., Scholes J.D. &Barker M.G. (eds.),Physiological plant ecology, Blackwell Science, Oxford, pp. 115–131.Google Scholar
  14. Frost D.L., Gurney A.L., Press M.C. &Scholes J.D. (1997):Striga hermonthica reduces photosynthesis in sorghum: the importance of stomatal limitations a potential role for ABA?Pl. Cell Environm. 20: 483–492.CrossRefGoogle Scholar
  15. Gibson C.C. &Watkinson A.R. (1989): The host range and selectivity of a parasitic plant:Rhinanthus minor L.Oecologia 78: 401–406.CrossRefGoogle Scholar
  16. Gibson C.C. &Watkinson A.R. (1992): The role of the hemiparasitic annualRhinathus minor in determining grassland community structure.Oecologia. 89: 62–68.CrossRefGoogle Scholar
  17. Graves J.D., Press M.C. &Stewart G.R. (1989): A carbon balance model of theSorghum-Striga hermonthica host-parasite association.Pl. Cell Environm. 12: 101–107.CrossRefGoogle Scholar
  18. Hwangbo J.K., Seel W.E. &Woodin S.J. (2003): Short-term exposure to elevated atmospheric CO2 benefits the growth of a facultative annual root hemiparasite,Rhinanthus minor (L.), more than that of its host,Poa pratensis (L.).J. Exp. Bot. 54: 1951–1955.PubMedCrossRefGoogle Scholar
  19. Källen E., Kattsov V., Walsh J. &Weatherhead E. (2001):Report from the Arctic Climate Impact Assessment Modelling and Scenarios Workshop, January 29–31, 2001. Stockholm, Sweden. Available at http://www.acia.uaf.edu.Google Scholar
  20. Karakas B., Oziasakins P., Stushnoff C., Suefferheld M. &Rieger M. (1997): Salinity and drought tolerance of mannitol-accumulating transgenic tobacco.Pl. Cell Environm. 20: 609–616.CrossRefGoogle Scholar
  21. Kelly C.K., Venable D.L. &Zimmerer K. (1988). Host specialization inCuscuta costaricensis: An assessment of host use relative to host availability.Oikos 53: 315–320.CrossRefGoogle Scholar
  22. Kriticos D.J., Sutherst R.W., Brown J.R., Adkins S.W. &Maywald G.F. (2003): Climate change and the potential distribution of an invasive alien plant:Acacia nilotica ssp.indica in Australia.J. App. Ecol. 40: 111–124.CrossRefGoogle Scholar
  23. Lewis D.H. (1984): Physiology and metabolism of alditols. In:Lewis D.H. (ed.),Storage carbohydrates in vascular plants, Cambridge University Press, Cambridge, pp. 157–179.Google Scholar
  24. Long S.P. (1999): Understanding the impacts of rising CO2: the contribution of environmental physiology. In:Press M.C., Scholes J.D. &Barker M.G. (eds.),Physiological plant ecology, Blackwell Science Ltd, Oxford, pp. 263–282.Google Scholar
  25. Makino A. &Mae T. (1999): Photosynthesis and plant growth at elevated levels of CO2.Pl. Cell. Physiol. 40: 999–1006.Google Scholar
  26. Marko M.D. &Stermitz F.R. (1997): Transfer of alkaloids fromDelphinium toCastilleja via root parasitism. Norditerpenoid alkaloid analysis by electrospray mass spectrometry.Biochem. Syst. Ecol. 25: 279–285.CrossRefGoogle Scholar
  27. Marvier M.A. (1998): Parasite impacts on host communities: Plant parasitism in a California coastal prairie.Ecology 79: 2616–2623.Google Scholar
  28. Matthies D. &Egli P. (1999): Response of a root hemiparasite to elevated CO2 depends on host type and soil nutrients.Oecologia 120: 156–161.CrossRefGoogle Scholar
  29. Mead E.W., Looker M., Gardner D.R. &Stermitz F.R. (1992): Pyrrolizidine alkaloids ofLiatris punctata and its root parasite,Castilleja intergra.Phytochemistry 31: 3255–3257.CrossRefGoogle Scholar
  30. Parmesan C. (1996): Climate and species’ range.Nature 382: 765–766.CrossRefGoogle Scholar
  31. Pate J.S., Davidson N.J., Kuo J. &Milburn J.A. (1990): Water relations of the root hemiparasiteOlax phyllanthi (Labill.)R.Br. (Olacaceae) and its multiple hosts.Oecologia 84: 186–193.Google Scholar
  32. Pennings S.C. &Callaway R.M. (1996): Impact of a parasitic plant on the structure and dynamics of salt marsh vegetation.Ecology 77: 1410–1419.CrossRefGoogle Scholar
  33. Phoenix G.K. &Press M.C. (2005): Linking physiological traits to impacts on community structure and function: the role of root hemiparasiticOrobanchaceae (ex-Scrophulariaceae).J. Ecol. 93: 67–78.CrossRefGoogle Scholar
  34. Press M.C., Graves J.D. &Stewart G.R. (1988): Transpiration and carbon acquisition in root hemiparasitic angiosperms.J. Exp. Bot. 39: 1009–1014.CrossRefGoogle Scholar
  35. Press M.C., Nour J.J., Bebawi F.F. &Stewart G.R. (1989): Antitranspirant induced heat stress in the parasitic plantStriga hermonthica — a novel method of control.J. Exp. Bot. 40: 585–591.CrossRefGoogle Scholar
  36. Press M.C. & Phoenix G.K. (2005): Impacts of parasitic plants on natural communities.New Phytol. Early on-line publication: doi: 10.1111/j.1469-8137.2005.01358.x.Google Scholar
  37. Press M.C., Touhy J.M. &Stewart G.R. (1987): Gas exchange characteristics of theSorghum-Striga host-parasite association.Pl. Physiol. 84: 814–819.CrossRefGoogle Scholar
  38. Press M.C. &Whittaker J.B. (1993): Exploitation of the xylem stream by parasitic organisms.Philos. Trans., Ser. B. 341: 101–111.CrossRefGoogle Scholar
  39. Pritchard S.G., Rogers H.H., Prior S.A. &Peterson C.M. (1999): Elevated CO2 and plant stucture: a review.Global Change Biol. 5: 807–837.CrossRefGoogle Scholar
  40. Quested H.M., Press M.C., Callaghan T.V. &Cornelissen J.H.C. (2002): The hemiparasitic angiospermBartsia alpina has the potential to accelerate decomposition in sub-arctic communities.Oecologia 130: 88–95.Google Scholar
  41. Quested H.M., Press M.C. &Callaghan T.V. (2003a): Litter of the hemiparasiteBartsia alpina enhances plant growth: evidence for a functional role in nutrient cycling.Oecologia 135: 606–614.PubMedGoogle Scholar
  42. Quested H.M., Cornelissen J.H.C., Press M.C., Callaghan T.V., Aerts R., Trosien F., Riemann P., Gwynn-Jones D., Kondratchuk A. &Jonasson S.E. (2003b): Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites.Ecology 84: 3209–3221.CrossRefGoogle Scholar
  43. Ramlan M.F. &Graves J.D. (1996): Estimation of the sensitivity to photoinhibition inStriga hermonthica-infected sorghum.J. Exp. Bot. 47: 71–78CrossRefGoogle Scholar
  44. Riopel J.L. &Timko M.P. (1995): Haustorial initiation and differentiation. In:Press M.C. &Graves J.D. (eds.),Parasitic plants, Chapman & Hall, London, pp. 39–79.Google Scholar
  45. Rogers H.H., Runion G.B. &Krupa S.V. (1994): Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere.Environm. Pollut. 83: 155–189.CrossRefGoogle Scholar
  46. Schneider M.J. &Stermitz F.R. (1990): Uptake of host plant alkaloids by root parasiticPedicularis species.Phytochemistry 29: 1811–1814.CrossRefGoogle Scholar
  47. Schulze E.-D. &Ehleringer J.R. (1984): The effect of nitrogen supply on growth and water-use efficiency of xylem tapping mistletoes.Planta 184: 268–275.CrossRefGoogle Scholar
  48. Schulze E.-D., Turner N.C. &Glatzel G. (1984): Carbon, water and nutrient relations of two mistletoes and their hosts: a hypothesis.Pl. Cell Environm. 7: 293–299.Google Scholar
  49. Schmidt I.K., Jonasson S., Shaver G.R., Michelsen A. &Nordin A. (2002): Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming.Pl. & Soil 242: 93–106.CrossRefGoogle Scholar
  50. Seel W.E. &Press M.C. (1994): Influence of the host on three sub-Arctic annual facultative root hemiparasites II. Gas exchange characteristics and resource use-efficiency.New Phytol. 127: 37–44.CrossRefGoogle Scholar
  51. Seel W.E., Cooper R.E. &Press M.C. (1993): Growth, gas exchange and water use efficiency of the facultative hemiparasiteRhinathus minor associated with hosts differing in foliar nitrogen cencentration.Physiol. Pl. 89: 64–70.CrossRefGoogle Scholar
  52. Smith S. &Stewart G.R. (1990): Effects of potassium levels on the stomatal behavior of the hemi-parasiteStriga hermonthica.Pl. Physiol. 94: 1472–1476.Google Scholar
  53. Stermitz F.R., Foderaro T. A. &Li Y. (1993): Iridoid glycoside uptake byCastilleja integra via root parasitism on PenstemonTeucriodes.Phytochemistry 32: 1151–1153.CrossRefGoogle Scholar
  54. Sutherst R.W. (2001): The vulnerability of animal and human health to parasites under global change.Int. J. Parasitol. 31: 933–948.PubMedCrossRefGoogle Scholar
  55. Veteli T.O., Kuokkanen K., Julkunen-Tiitto R., Roininen H. &Tahvanainen J. (2002): Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry.Global Change Biol. 8: 1240–1252.CrossRefGoogle Scholar
  56. Wand S.J.E., Midgley G.F., Jones M.H. &Curtis P.S. (1999). Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentrations: a meta-analytic test of current theories and perceptions.Global Change Biol. 5: 723–741.CrossRefGoogle Scholar
  57. Watling J.R. &Press M.C. (1997): How is the relationship between the C4 cerealSorghum bicolour and the C3 root hemiparasitesStriga hermonthica andStriga asiatica affected by elevated CO2?Pl. Cell Environm. 20: 1292–1300.CrossRefGoogle Scholar
  58. Watling J.R. &Press M.C. (1998): How does the C4 grassEragrostis pilosa respond to elevated carbon dioxide and infection with the parasitic angiospermStriga hermonthica.New Phytol. 140: 667–675.CrossRefGoogle Scholar
  59. Watling J.R. &Press M.C. (2000): Infection with the parasitic angiospermStriga hermonthica influences the response of the C3 cerealOryza sativa to elevated CO2.Global Change Biol. 6: 919–930.CrossRefGoogle Scholar
  60. Watling J.R. &Press M.C. (2001): Impacts of infection by parasitic angiosperms on host photosynthesis.Pl. Biol. 3: 244–250.CrossRefGoogle Scholar

Copyright information

© Institute of Botany 2005

Authors and Affiliations

  • Gareth K. Phoenix
    • 1
  • Malcolm C. Press
    • 1
  1. 1.Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUnited Kingdom

Personalised recommendations