Advertisement

Folia Geobotanica

, Volume 40, Issue 2–3, pp 115–134 | Cite as

Phylogeny and biogeography ofOrobanchaceae

  • Andrea D. WolfeEmail author
  • Christopher P. Randle
  • Liang Liu
  • Kim E. Steiner
Article

Abstract

Orobanchaceae, as it is currently defined, includes all levels of parasitic ability ranging from nonparasitic (Lindenbergia) to facultative and obligate hemiparasites to obligate holoparasites. Several genera are of economic importance as crop weeds and have been studied by scientists interested in developing methods of control, but most genera have not been studied in a comparative framework. In this study we have used ITS sequence data to build a phylogenetic framework with which to examine previous systematic hypotheses of relationships among genera, and biogeographic hypotheses of either a Cretaceous, Gondwanan or mid-Tertiary, Laurasian origin of the family. A single-most parsimonious ITS tree was produced from a combined data set of nucleotides and gap characters. Our results support the current classification ofOrobanchaceae and a hypothesis of a mid-Tertiary, Laurasian origin of the family.

Keywords

Biogeography ITS Parasitic plants Phylogeny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atokple I.D.K., Singh B.B., &Emechebe A.M. (1995): Genetics of resistance toStriga andAlectra in cowpea.J. Heredity 86: 45–49.Google Scholar
  2. Axelrod D.I. (1975): Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation.Ann. Missouri Bot. Gard. 62: 280–334.CrossRefGoogle Scholar
  3. Backlund A., Hunde A. &Langstrom E. (1993): A revision ofCycniopsis (Scrophulariaceae).Nord. J. Bot. 13: 185–194.Google Scholar
  4. Barker W.R. (1982): Taxonomic studies inEuphrasia L. (Scrophulariaceae). A revised infrageneric classification and a revision of the genus in Australia.J. Adelaide Bot. Gard. 5: 1–304.Google Scholar
  5. Barker W.R. (1986): Biogeography and evolution inEuphrasia (Scrophulariaceae), particularly relating to Australia. In:Barlow B.A. (ed.),Flora and fauna of alpine Australasia, Ages and origins, CSIRO, Melbourne, pp. 489–510.Google Scholar
  6. Beck von Mannagetta G. (1930):Orobanchaceae. In:Engler A. (ed.),Das Pflanzenreich 96, Verlag von Wilhelm Engelmann, Leipzig, pp. 1–348.Google Scholar
  7. Boeshore I. (1920): The morphological continuity ofScrophulariaceae andOrobanchaceae.Contr. Bot. Lab. Morris Arbor. Univ. Pennsylvania 5: 139–177.Google Scholar
  8. Coleman A.W. (2003): ITS2 is a double-edged tool for eukaryote evolutionary comparisons.Trends Genet. 19: 370–375.PubMedCrossRefGoogle Scholar
  9. Denduangboripant J. &Cronk Q.C.B. (2001): Evolution and alignment of the hypervariable Arm 1 ofAeschynanthus (Gesneriaceae) ITS2 nuclear ribosomal DNA.Molec Phylog. Evol. 20: 163–172.CrossRefGoogle Scholar
  10. DePamphilis C.W. &Palmer J.D. (1990): Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant.Nature 348: 337–339.PubMedCrossRefGoogle Scholar
  11. DePamphilis C.W., Young N.D., &Wolfe A.D. (1997): Evolution of plastid generps2 in a lineage of hemiparasitic and holoparasitic plants: Many losses of photosynthesis and complex patterns of rate varition.Proc. Natl. Acad. Sci. USA 94: 7367–7372.PubMedCrossRefGoogle Scholar
  12. Felsenstein J. (2004):PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle.Google Scholar
  13. Fischer E. (1996): A revision of the genusAlectraThunberg (Scrophulariaceae) in Madagascar, with a description ofPseudomelasma, gen. nov.Bull. Mus. Natl. Hist. Nat. B, Adansonia 18: 45–65.Google Scholar
  14. Fjeldsa J. &Lovett J.C. (1997): Geographical patterns of old and young species in African forest biota: The significance of specific montane areas as evolutionary centres.Biodiversity Conservation 6: 325–346.CrossRefGoogle Scholar
  15. Goertzen L.R., Cannone J.J., Gutell R.R., &Jansen R.K. (2003): ITS secondary structure derived from comparative analysis: implications for sequence alignment and phylogeny of the Asteraceae.Molec. Phylog. Evol. 29: 216–234.CrossRefGoogle Scholar
  16. Hasegawa M., Kishino H. &Yano T. (1985): Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.J. Molec. Evol. 22: 160–174.PubMedCrossRefGoogle Scholar
  17. Heads M.J. (1994): Biogeographic studies in New ZealandScrophulariaceae: TribesRhinantheae, Calceolarieae andGratioleae.Candollea 94: 55–80.Google Scholar
  18. Hepper F.N. (1963):Scrophulariaceae. In:Hepper F.N. (ed.),Flora of West Tropical Africa, Crown agents for oversea governments and administrations, Millbank, London, pp. 352–374.Google Scholar
  19. Hershkovitz M.A. &Zimmer E.A. (1996): Conservation patterns in angiosperm rDNA ITS2.Nucl. Acids Res. 24: 2857–2867.PubMedCrossRefGoogle Scholar
  20. Hjertson M.L. (1995): Taxonomy, phylogeny and biogeography ofLindenbergia (Scrophulariaceae).Bot. J. Linn. Soc. 119: 265–321.CrossRefGoogle Scholar
  21. Holub J. (1990): Some taxonomic and nomenclatural changes withOrobanche L.Preslia 62: 193–198.Google Scholar
  22. Hong D.-Y. (1983): The distribution ofScrophulariaceae in the holarctic with special reference to the floristic relationships between eastern Asia and eastern North America.Ann. Missouri Bot. Gard. 70: 701–712.CrossRefGoogle Scholar
  23. King L.J. (1966):Weeds of the world. Biology and control. Interscience Publishers, London.Google Scholar
  24. Kuijt J. (1969):The biology of parasitic flowering plants. University of California Press, Berkeley and Los Angeles.Google Scholar
  25. Mabberley D.J. (1997):The plant-book. A portable dictionary of the vascular plants. Cambridge University Press, Cambridge.Google Scholar
  26. Maddison W.P. &Maddison D.R. (1992):MacClade. Sinauer Associates, Sunderland.Google Scholar
  27. Magallón S., Crane P.R. &Herendeen P.S. (1999): Phylogenetic pattern, diversity, and diversification of eudicots.Ann. Missouri Bot. Gard. 86: 876–893.CrossRefGoogle Scholar
  28. Mai J.C. &Coleman A.W. (1997): The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants.J. Molec. Evol. 44: 258–271.PubMedCrossRefGoogle Scholar
  29. Mohamed K.I., Musselman L.J. &Riches C.R. (2001): The GenusStriga (Scrophulariaceae) in Africa.Ann. Missouri Bot. Gard. 88: 60–103.CrossRefGoogle Scholar
  30. Musselman L.J. (1980): The biology ofStriga, Orobanche, and other root-parasitic weeds.Annual Rev. Phytopathol. 18: 463–489.CrossRefGoogle Scholar
  31. Musselman L.J. (1986): Parasitic weeds and their impact in southwest Asia.Proc. Roy. Soc. Edinburgh 89B: 283–288.Google Scholar
  32. Musselman L.J. (1996): Parasitic weeds in the southern United States.Castanea 61: 271–292.Google Scholar
  33. Musselman L.J. &Hepper F.N. (1988): Studies in the flora of Arabia XX: the genusStriga in Arabia.Notes Roy. Bot. Gard. Edinburgh 45 (1):43–50.Google Scholar
  34. Musselman L.J. &Mann W.F. Jr. (1978):Root parasites of southern forests. South Forest Experimental Station, New Orleans.Google Scholar
  35. Musselman L.J. &Parker C. (1982): Preliminary host ranges of some strains of economically important broomrapes (Orobanche).Econ. Bot. 36: 270–273.Google Scholar
  36. Nickrent D.L., Duff R.J., Colwell A.E., Wolfe A.D., Young N.D., Steiner K.E. &DePamphilis C.W (1998): Molecular phylogenetic and evolutionary studies of parasitic plants. In:Soltis D.E., Soltis P.S. &Doyle J.J. (eds.),Plant molecular systematics II, Kluwer, Boston, pp. 211–241.Google Scholar
  37. Nickrent D.L., Ouyang Y., Duff R.J. &DePamphilis C.W. (1997): Do nonasterid holoparasitic flowering plants have plastid genomes?Pl. Molec. Biol. 34: 717–729.CrossRefGoogle Scholar
  38. Nickrent D.L. &Starr E.M. (1994): High rates of nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants.J. Molec. Evol. 39: 62–70.PubMedCrossRefGoogle Scholar
  39. Olmstead R.G., DePamphilis C.W., Wolfe A.D., Young N.D., Elisens W.J. &Reeves P.A. (2001): Disintegration of theScrophulariaceae.Amer. J. Bot. 88: 348–361.CrossRefGoogle Scholar
  40. Paran I., Gidoni D. &Jacobsohn R. (1997): Variation between and within broomrape (Orobanche) species revealed by RAPD markers.Heredity 78: 68–74.PubMedCrossRefGoogle Scholar
  41. Pennell F.W. (1935):The Scrophulariaceaeof eastern temperate North America. Academy of Natural Sciences of Philadelphia, Philadelphia.Google Scholar
  42. Rambaut A. (1996):Se-Al sequence alignment editor. Department of Zoology, University of Oxford, Oxford.Google Scholar
  43. Raven P.H. &Axelrod D.L. (1972): Plate tectonics and Australasian paleobiogeography.Science 176: 1379–1386.PubMedCrossRefGoogle Scholar
  44. Raven P.H. &Axelrod D.L. (1974): Angiosperm biogeography and past continental movements.Ann. Missouri Bot. Gard. 61: 539–673.CrossRefGoogle Scholar
  45. Ritchie A., Blackwell A., Malloch G. &Fenton B. (2004): Heterogeneity of ITS1 sequences in the biting midgeCulicoides impunctatus (Goetghebuer) suggests a population in Argyll, Scotland, may be genetically distinct.Genome 47: 546–558.PubMedCrossRefGoogle Scholar
  46. Sanderson M.J. (2003): r8s. Inferring absolute rates of molecular evolution and diversgence times in the absence of a molecular clock.Bioinformatics 19: 301–302.PubMedCrossRefGoogle Scholar
  47. Sang T., Crawford D.J. &Stuessy T.F. (1995): Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: Implications for biogeography and concerted evolution.Proc. Natl. Acad. Sci. USA 92: 6813–6817.PubMedCrossRefGoogle Scholar
  48. Schneeweiss G.M., Colwell A., Park J.-M., Jang C.-G. &Stuessy T.F. (2004): Phylogeny of holoparasiticOrobanche (Orobanchaceae) inferred from nuclear ITS sequences.Molec. Phylog. Evol. 30 465–478.CrossRefGoogle Scholar
  49. Seine R., Fischer E. &Barthlott W. (1995): Notes on theScrophulariaceae of Zimbabwean inselsbergs, with the description ofLindernia syncerus sp. nov.Feddes Repert. 106: 7–12.CrossRefGoogle Scholar
  50. Simmons M.P. &Ochoterena H. (2000): Gaps as characters in sequence-based phylogenetic analyses.Syst. Biol. 49: 369–381.PubMedCrossRefGoogle Scholar
  51. Swofford D.L. (2002):PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland.Google Scholar
  52. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. &Higgins D.G. (1997): The CLUSTAL-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucl. Acids Res. 25: 4876–4882.PubMedCrossRefGoogle Scholar
  53. Weber H.C. (1980): Zur Evolution des Parasitsmus bei denScrophulariaceae undOrobanchaceae.Pl. Syst. Evol. 136: 217–232.CrossRefGoogle Scholar
  54. Wen J. &Zimmer E.A. (1996): Phylogeny and biogeography ofPanax L. (the ginseng genus,Araliaceae): Inferences from ITS sequences of nuclear ribosomal DNA.Molec. Phylog. Evol. 6: 167–177.CrossRefGoogle Scholar
  55. Wikström N., Savolainen V., &Chase M.W. (2001): Evolution of the angiosperms: calibrating the family tree.Proc. Roy. Soc. London, Ser. B, Biol. Sci. 268: 2211–2220.CrossRefGoogle Scholar
  56. Wolfe A.D. &DePamphilis C.W. (1997): Alternate paths of evolution for the photosynthetic generbcL in four nonphotosynthetic species ofOrobanche.Pl. Molec. Biol. 33: 965–977.CrossRefGoogle Scholar
  57. Wolfe A.D. &DePamphilis C.W. (1998): The effect of relaxed functional constraints on the photosynthetic generbcL in photosynthetic and nonphotosynthetic parasitic plants.Molec. Biol. Evol. 15: 1243–258.PubMedGoogle Scholar
  58. Wolfe A.D. &Randle C.P. (2001): Relationships within and among species of the holoparasitic genusHyobanche (Orobanchaceae) inferred from ISSR banding patterns and nucleotide sequences.Syst. Bot. 26: 120–130.Google Scholar
  59. Young N.D., Steiner K.E. &DePamphilis C.W. (1999): The evolution of parasitism inScrophulariaceae/Orobanchaceae: Plastid gene sequences refute an evolutionary transition series.Ann. Missouri Bot. Gard. 86: 876–893.CrossRefGoogle Scholar
  60. Zuker M. (2003.): Mfold web server for nucleic acid folding and hybridization prediction.Nucl. Acids Res. 31: 3406–3415.PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Botany 2005

Authors and Affiliations

  • Andrea D. Wolfe
    • 1
    Email author
  • Christopher P. Randle
    • 1
  • Liang Liu
    • 2
  • Kim E. Steiner
    • 3
  1. 1.Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusUSA
  2. 2.Department of StatisticsThe Ohio State UniversityColumbusUSA
  3. 3.Department of BotanyCalifornia Academy of ScienceSan FranciscoUSA

Personalised recommendations