Folia Geobotanica

, Volume 37, Issue 1, pp 129–139 | Cite as

Weakening of climatic constraints with global warming and its consequences for evergreen broad-leaved species



Meteorological stations located in the lower areas of southern Switzerland have recorded a period with distinct milder winter conditions since 1970 as compared with the first half of the 20th century. The twofold set of climatic parameters, the absolute values and frequency of minimum temperatures as well as the length of the growing season have shifted towards warmer conditions in the last thirty years. In this paper, consequences of the lengthened growing season to 11 months are discussed. The detected climatic change supposedly favours species with evergreen broad-leaved growth form. With the analysis of 170 resurveyed relevés the hypothesis of whether the group of evergreen broad-leaved species have succeeded in profiting from this weakening of climatic constraints was verified. Conspicuous changes have been observed not only in terms of the abundance and frequency of indigenous evergreen broad-leaved species, but also with a number of exotic species sharing equal characteristics and having succeeded in colonizing forest areas and establishing stands in the shrub layer. It is suggested that in areas with a minimum temperature above −10 °C and sufficient water supply throughout the year, evergreen broad-leaved species become increasingly competitive as soon as the growing season (days without frost) lengthens to about 300–320 days.


Climate and vegetation Climate change Growth forms Species range 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonietti A. (1968): Le associazioni forestali dell’orizzonte submontano del Canton Ticino su substrati pedogenetici ricchi di carbonati (The forest associations on carbon rich soils of the submontane belt in the Canton Ticino).Mitt. Eidgenössischen Anst. Forstl. Versuchwesen 4: 88–221.Google Scholar
  2. Aschwanden A., Beck M., Häberli C., Haller G., Keine M., Roesch A., Sie R. &Stutz M. (1996):Klimatologie der Schweiz (Jahrgang 1996). Klimatologie 1961–1990, Heft 2 (1/4). Bereinigte Zeitreihen. Die Ergebnisse des Projektes Klima 90 Band 1: Auswertungen. SMA, Zürich.Google Scholar
  3. Box E.O. (1981):Macroclimate and plant forms: An introduction to predictive modelling in phytogeography. Tasks for Vegetation Science, Junk Publishers, The Hague.Google Scholar
  4. Braun-Blanquet J. (1964):Pflanzensoziologie. Springer Verlag, Wien.Google Scholar
  5. Brown J.L., Li S.-H. &Bhagabati N. (1999): Long-term trend toward earlier breeding in an American bird: A response to global warming?Proc. Natl. Acad. Sci. USA 96: 5565–5569.PubMedCrossRefGoogle Scholar
  6. Carraro G., Klötzli F., Walther G.-R., Gianoni P. & Mossi R. (1999):Observations of changes in vegetation in relation to climate warming. Final report NRP 31. vdf, Zürich.Google Scholar
  7. Chapin F.S.III,Bert-Harte M.S., Hobbie S.E. &Zhong H. (1996): Plant functional types as predictors of transient responses of arctic vegetation to global change.J. Veg. Sci. 7: 347–358.CrossRefGoogle Scholar
  8. Delarze R., Gonseth Y. &Galland P. (1999):Lebensräume der Schweiz. Ott, Thun.Google Scholar
  9. Diaz S. &Cabido M. (1997): Plant functional types and ecosystem function in relation to global change.J. Veg. Sci. 8: 463–474.CrossRefGoogle Scholar
  10. Dierschke H. (1994):Pflanzensoziologie. UTB, Ulmer, Stuttgart.Google Scholar
  11. Ellenberg H. &Rehder H. (1962): Natürliche Waldgesellschaften der aufzuforstenden Kastanienflächen im Tessin.Schweiz. Z. Forstwesen 113: 128–142.Google Scholar
  12. Gianoni G., Carraro G. &Klötzli F. (1988): Thermophile, an laurophyllen Pflanzenarten reiche Waldgesellschaften im hyperinsubrischen Seenbereich des Tessins.Ber. Geobot. Inst. ETH, Stiftung Rübel 54: 164–180.Google Scholar
  13. Grabherr G., Gottfried M. &Pauli H. (1994): Climate effects on mountain plants.Nature 369: 448.CrossRefGoogle Scholar
  14. Harte J. &Shaw R. (1995): Shifting dominance within a montane vegetation community: results of a climate-warming experiment.Science 267: 876–880.PubMedCrossRefGoogle Scholar
  15. Hess H.E., Landolt E., Hirzel R. &Baltisberger M. (1998):Bestimmungsschlüssel zur Flora der Schweiz und angrenzender Gebiete. Ed. 4. Birkhäuser, Basel.Google Scholar
  16. Inouye D.W. (2000): The ecological and evolutionary significance of frost in the context of climate change.Ecol. Lett. 3: 457–463.CrossRefGoogle Scholar
  17. IPCC (1996):Climate change 1995. Impacts, adaptations and mitigation of climatic change: scientific-technical analyses. Contribution of working group II to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.Google Scholar
  18. Iversen J. (1944):Viscum, Hedera andIlex as climate indicators.Förh. Geol. Fören, Stockholm 66/3: 463–483.Google Scholar
  19. Klötzli F. (1988): On the global position of the evergreen broad-leaved (non-ombrophilous) forest in the subtropical and temperate zones.Veröff. Geobot. Inst. ETH Stiftung Rübel 98: 169–196.Google Scholar
  20. Klötzli F., Walther G.-R., Carraro G. &Grundmann A. (1996): Anlaufender Biomwandel in Insubrien.Verh. Ges. Ökol. 26: 537–550.Google Scholar
  21. Klötzli F. &Walther G.-R. (eds.) (1999):Recent shifts in vegetation boundaries of deciduous forests, especially due to general global warming. Birkhäuser, Basel.Google Scholar
  22. Lescop-Sinclair K. &Payette S. (1995): Recent advance of the arctic treeline along the eastern coast of Hudson Bay.J. Ecol. 83: 929–936.CrossRefGoogle Scholar
  23. Menzel A. &Fabian P. (1999): Growing season extended in Europe.Nature 397: 659.CrossRefGoogle Scholar
  24. Oberdorfer E. (1964): Der insubrische Vegetationskomplex, seine Struktur und Abgrenzung gegen die submediterrane Vegetation in Oberitalien und in der Südschweiz.Beitr. Naturk. Forsch. Südwestdeutschl. 23(2): 41–187.Google Scholar
  25. Ott J. (1996): Zeigt die Ausbreitung der Feuerlibelle in Deutschland eine Klimaänderung an?Naturschutz & Landschaftsplanung 28/2: 53–61.Google Scholar
  26. Parmesan C. (1996) Climate and species’ range.Nature 382: 765–766.CrossRefGoogle Scholar
  27. Parmesan C., Ryrholm N., Stefanescus C., Hill J.K., Thomas C.D., Descimon H., Huntley B., Kaila L., Kullberg J., Tammaru T., Tennett W.J., Thomas J.A. &Warren M. (1999): Poleward shifts in geographical ranges of butterfly species associated with regional warming.Nature 399: 579–583.CrossRefGoogle Scholar
  28. Sæther B.-E., Tufto J., Engen S., Jerstad K., Røstad O.W. &Skåtan J.E. (2000): Population dynamical consequences of climate change for a small temperate songbird.Science 287: 854–856.PubMedCrossRefGoogle Scholar
  29. Sakai A. &Larcher W. (1987):Frost survival of plants. Ecological Studies 62, Springer, Berlin.Google Scholar
  30. Schmid E. (1956):Flora des Südens. Ed. 2. Rascher, Zürich.Google Scholar
  31. Spinedi F. (1991):Il clima del Ticino della mesolcina con accenni di climatologia generale (The climate of the mesolcina of Ticino and some general climatic aspects). Arbeitsberichte der Schweizerischen Meteorologischen Anstalt, Zürich.Google Scholar
  32. Thompson K., Hodgson J.G. &Rich T.C.G. (1995): Native and alien invasive plants: more of the same?Ecography 18: 390–402.CrossRefGoogle Scholar
  33. Walker B.H., Steffen W.L., Canadell J. &Ingram J.S.I. (eds.) (1999):The terrestrial biosphere and global change. IGBP Book Series 4. Cambridge University Press, Cambridge.Google Scholar
  34. Walther G.-R. (1999): Distribution and limits of evergreen broad-leaved (laurophyllous) species in Switzerland.Bot. Helv. 109: 153–167.Google Scholar
  35. Walther G.-R. (2000): Climatic forcing on the dispersal of exotic species.Phytocoenologia 30: 409–430.Google Scholar
  36. Walther G.-R. (2001): Laurophyllisation — a sign for a changing climate? In:Burga C.A. &Kratochwil A. (eds.),Biomonitoring: General and applied aspects on regional and global scales, Tasks for vegetation science 35, Kluwer, Dordrecht, pp. 207–223.Google Scholar
  37. Walther G.-R., Burga C.A. &Edwards P.J. (eds.) (2001):“Fingerprints” of climate change — adapted behaviour and shifting species ranges. Kluwer, New York, London.Google Scholar
  38. Woodward F.I. (1987):Climate and plant distribution. Cambridge University Press, London.Google Scholar
  39. Zeller O. (1951): Über die Assimilation und Atmung der Pflanze im Winter bei tiefen Temperaturen.Planta 39: 500–526.CrossRefGoogle Scholar
  40. Zuber R.K. (1979): Untersuchungen über die Vegetation und die Wiederbewaldung einer Brandfläche bei Locarno (Kanton Tessin).Beih. Z. Schweiz. Forstvereins 65.Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2002

Authors and Affiliations

  1. 1.Institute of GeobotanyUniversity of HannoverHannoverGermany

Personalised recommendations