Folia Geobotanica

, Volume 37, Issue 1, pp 17–32 | Cite as

Vegetation dynamics in central european forest ecosystems (near-natural as well as managed) after storm events

  • Anton FischerEmail author
  • Marcus Lindner
  • Clemens Abs
  • Petra Lasch


All over the world forests and woodlands are damaged or reset to initial stages by fire, insect outbreaks or storms. In Central Europe storm events are the most important natural disturbances affecting stand structures of both natural and managed forests and yet only a few studies exist on long-term forest development following the destruction of the tree layer by a storm. This paper presents a permanent plot study established in 1988 in the Bavarian Forest National Park (SE Germany) on areas, where the tree layer had been destructed by a storm on August 1, 1983. The records concerning (1) floristic composition (spermatophytes, pteridophytes, bryophytes, lichens) and cover degree, (2) location and shape of each tree higher than 1 meter (height, diameter at breast height) including position of fallen trees and (3) number of seedlings and saplings were taken in 1988, 1993 and 1998. Two windfall areas, situated next to each other in the same broad and flat valley bottom on wet soils under local cold climate conditions (potential as well as recent vegetation:Calamagrostio villosae-Piceetum bazzanietosum) were analyzed, one of them with completely free development after the storm event (“untouched”), the other with dead wood cleared off after the event, but thereafter with free development (“cleared”). The vegetation analysis separated two major trends in vegetation dynamics: (1) On the cleared plots with intensive soil-surface disturbance (removal of the damaged wood) the species composition changed towards pioneer herb vegetation (Rubus sp.), and pioneer forest species (here: birch,Betula pendula and/orB. pubescens) established. Subsequently, vegetation dynamics leading towards clusters of forest ground-layer species composition took place. (2) In untouched stands, where soil-surface disturbances were restricted to pit-and-mound-system created by uprooted trees, the patchiness of forest vegetation increased and a regeneration of mainly terminal tree species (here: Norway spruce,Picea abies) started. Stand development for the next 100 years was simulated using the model FORSKA-M. The model is individual-based and includes competition for light, soil water, and nutrients. The simulations suggest that floristic structures of cleared and untouched plots, respectively, will remain different for several decades, but within one century, the floristic structure becomes rather similar. Major processes in forest ecosystems which can be used to improve forest management and nature conservation practices have been identified based on the results of the case study.


Disturbance Forest dynamics Modelling Permanent plot Succession 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous (2000): Schwere Schäden durch Orkan Lothar.Wald & Holz 2(2000): 16–17.Google Scholar
  2. Baskin Y. (1999): Yellowstone fires: A decade later. Ecological lessons learned in the wake of the conflagration.BioScience 49: 93–97.CrossRefGoogle Scholar
  3. Burschel P. &Huss J. (1987):Grundriß des Waldbaus. Ed. 2., Pareys Studientexte 49, Parey/Blackwell, Berlin.Google Scholar
  4. Bürger G. (1997): On the disaggregation of climatical means and anomalies.Climate Res. 8: 183–194.CrossRefGoogle Scholar
  5. Dierschke H. (1988): Pflanzensoziologische und ökologische Untersuchungen in Wäldern Süd-Niedersachsens. IV: Vegetationsentwicklung auf langfristigen Dauerflächen von Buchenwald-Kahlschlägen.Tuexenia 8: 307–326.Google Scholar
  6. Erhard M., Lindner M. &Cramer W. (2001): Climate data. In:Kramer K. &Mohren G.M.J. (eds.),Long-term effects of climate change on carbon budgets of forests in Europe, Alterra, Green World Research, Wageningen, pp. 151–164.Google Scholar
  7. Fischer A. (1987): Untersuchungen zur Populationsdynamik am Beginn von Sekundärsukzessionen. Die Bedeutung von Samenbank und Samenniederschlag für die Wiederbesiedlung vegetationsfreier Flächen in Wald- und Grünlandgesellschaften.Diss. Bot. 110: 1–234.Google Scholar
  8. Fischer A. (ed.) (1998):Die Entwicklung von Wald-Biozönosen nach Sturmwurf. Reihe “Umweltforshung in Baden-Württemberg”, Ecomed, Landsberg.Google Scholar
  9. Fischer A., Abs G. &Lenz F. (1990): Natürliche Entwicklung von Waldbeständen nach Windwurf. Ansätze einer “Urwaldforschung” in der Bundesrepublik.Forstwiss. Centralbl. 109: 309–326.CrossRefGoogle Scholar
  10. Fischer A. &Jehl H. (1999): Vegetationsentwicklung auf Sturmwurfflächen im Nationalpark Bayerischer Wald aus dem Jahre 1983. In:Fischer A. & Mössmer R. (eds.), Forschung in Sturmwurf-Ökosystemen Mitteleuropas,Forstl. Forschungsber. (Freising) 176: 93–101.Google Scholar
  11. Fischer A. &Klotz S. (1999): Zusammenstellung von Begriffen, die in der Vegetations-Dauerbeobachtung eine zentrale Rolle spielen.Tuexenia 19: 3–11.Google Scholar
  12. Fischer A. & Mössmer R. (eds.) (1999): Forschung in Sturmwurf-Ökosystemen Mitteleuropas.Forstl. Forschungsber. (Freising) 176: 1–144.Google Scholar
  13. Goldammer J.G. &Furyaev V.V. (eds.): (1996):Fire in ecosystems of boreal Eurasia. Kluwer Academic Publishers, London.Google Scholar
  14. Han Jinxuan, Huan Jing &Gu Lianhong (1995): Dynamic analysis of natural regeneration of seedlings and young trees in the windfall area of Changbai Mountain Biosphere Reserve. In:Song Yongchang, Dierschke H. &Wang Xianrong (eds.),Applied Vegetation Ecology, East China Normal University Press, Proc. 35th Symp. IVAS, Shanghai, pp. 155–160.Google Scholar
  15. Holenstein B. (1994):Sturmschäden 1990 im Schweizer Wald. Schriftenreihe Umweltschutz 218, BUWAL ed., Bern.Google Scholar
  16. Huss J. (1991): Konzeptionen zur Wiederbewaldung von Sturmschadensflächen. Allg. Forstz. 46: 25–30.Google Scholar
  17. Kennel M. (1998): Modellierung des Wasser- und Stoffhaushaltes von Waldökosystemen. Fallstudien, Forsthydrologisches Forschungsgebiet Krofdorf, Referenzgebiet Große Ohe.Forstl. Forschungsber. (Freising) 168: 1–362.Google Scholar
  18. Knight D.H. (1994):Mountains and plains. The ecology of Wyoming landscapes. Yale University Press, New Haven, London.Google Scholar
  19. Klotz S. (1996): Dauerflächenuntersuchungen. Ergebnisse einer Umfrage.Arch. Naturschutz Landschaftsf. 35: 175–181.Google Scholar
  20. König A., Mössmer R. &Bäumler A. (1995): Waldbauliche Dokumentation der flächigen Sturmschäden des Frühjahrs 1990 in Bayern und meteorologische Situation zur Schadenszeit.Ber. Bayer. Landesanst. Wald Forstw. (Freising) 2: 1–336.Google Scholar
  21. Korpel’ St. (1995):Die Urwälder der Westkarpaten. G. Fischer, Stuttgart, Jena, New York.Google Scholar
  22. Lässig R. &Mocalov S. (2000): Frequency and characteristics of severe storms in the Urals and their influence on the development, structure and management of the boreal forests.Forest Ecol. Managem. 135: 179–194.CrossRefGoogle Scholar
  23. Lasch P., Lindner M., Ebert B., Flechsig M., Gerstengarbe F.-W., Suckow F. &Werner P.C. (1999): Regional impact analysis of climate change on natural and managed forests in the Federal State of Brandenburg, Germany.Environm. Modeling Assessment 4: 273–286.CrossRefGoogle Scholar
  24. Lindner M. (2000): Developing adaptive forest management strategies to cope with climate change.Tree Physiol. 20: 299–307.Google Scholar
  25. Mayer H., Neumann M. &Sommer H.-G. (1980): Bestandesaufbau und Verjüngungsdynamik unter dem Einfluß natürlicher Wilddichten im kroatischen Urwaldrest Corkova Uvala/Pitvicer Seen.Schweiz. Z. Forstwesen 131: 45–70.Google Scholar
  26. McCune B. &Mefford M.J. (1999):Multivariate analysis of ecological data. Version 3.8. MJM Software, Gleneden Beach, Oregon.Google Scholar
  27. Palmer M.W., McAlister S.D., Arevalo J.R. &DeCoster J.K. (2000): Changes in the understory during 14 years following catastrophic windthrow in two Minnesota forests.J. Veg. Sci. 11: 841–854.CrossRefGoogle Scholar
  28. Petermann R. &Seibert P. (1979):Die Pflanzengesellschaften des Nationalparks Bayerischer Wald. Reihe “Nationalpark Bayerischer Wald” 4. Bayer. Staatsministerium für Ernährung, Landwirtschaft und Forsten, Grafenau.Google Scholar
  29. Plochmann R. (1956): Bestockungsausfbau und Baumartenwandel nordischer Urwälder, dargestellt an Beispielen aus Nordwestalberta/Kanada.Forstwiss. Forsch. 6: 1–96.Google Scholar
  30. Prach K., Bartha S., Joyce Ch., Pyšek P., van Diggelen R. &Wiegleb G. (2001): The role of spontaneous vegetation succession in ecosystem restoration: a perspective.J. Appl. Veg. Sci. 4: 111–114.CrossRefGoogle Scholar
  31. Prentice H., Sykes M.T. &Cramer W. (1993): A simulation model for the transient effects of climate change on forest landscapes.Ecol. Modelling 65: 51–70.CrossRefGoogle Scholar
  32. Putz F.E. (1983): Treefall pits and mounds, buried seeds, and the importance of soil disturbance to pioneer trees on Barro Colorado Island, Panama.Ecology 64: 1069–1074.CrossRefGoogle Scholar
  33. Schönenberger W., Kuhn N. &Lässig R. (1995): Forschungsziele und -projekte auf Windwurfflächen in der Schweiz.Schweiz. Z. Forstwesen 146: 859–862.Google Scholar
  34. Schumacher W. (1995): Dokumentation der Sturmschäden 1990.Schriftenreihe Landesforstverwaltung Baden-Württemberg 75: 1–173.Google Scholar
  35. Teuffel K. von (2000): Waldbauliche Erfahrungen mit der Bewältigung von Sturmschäden von 1990 in Baden-Württemberg.Ber. Freiburger Forstl. Forschung 25. Online at Scholar
  36. Thompson K. Bakker J. &Bekker R. (1997):The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, Cambridge.Google Scholar
  37. Ulanova N. (1991): Vegetation mapping as a tool for detection of windfall processes in primary forest communities.Phytocoenosis 3(Suppl. Cartogr. Geobot. 2): 219–222.Google Scholar
  38. Ulanova N. (2000a): Plant age stages during succession in woodland clearings in Central Russia. Proceedings IAVS-symposium, 80–83, Opulus Press, Uppsala.Google Scholar
  39. Ulanova N. (2000b): The effects of windthrow on forests at different spatial scales: a review.Forest Ecol. Managem. 135: 155–167.CrossRefGoogle Scholar
  40. Wisskirchen R. &Haeupler H. (1998):Standardliste der Farn-und Blütenpflanzen Deutschlands. Eugen Ulmer, Stuttgart.Google Scholar
  41. Zukrigl K, Eckhart G. &Nather J. (1963): Standortskundliche und waldbauliche Untersuchungen in Urwaldresten der niederösterreichischen Kalkalpen.Mitt. Forstl. Bundes-Versuchanst. Mariabrunn 62: 1–244.Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2002

Authors and Affiliations

  • Anton Fischer
    • 1
    Email author
  • Marcus Lindner
    • 2
  • Clemens Abs
    • 1
  • Petra Lasch
    • 2
  1. 1.Geobotany, Department of Ecology, Center of Life and Food SciencesTU MünchenFreisingGermany
  2. 2.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations