Folia Geobotanica

, Volume 35, Issue 2, pp 211–230 | Cite as

Linking a spatially-explicit model of acacias to GIS and remotely-sensed data

  • Kerstin Wiegand
  • Heike Schmidt
  • Florian Jeltsch
  • David Ward
Article

Abstract

Spatially-explicit and landscape-related simulation models are increasingly used in ecology, but are often criticized because their parameterization has high data requirements. A frequently suggested approach to overcome this difficulty is the linkage of spatially-explicit or landscape-related models with GIS (geographic information system) and remote-sensing technology. GIS can provide data on relevant landscape features, such as topography, and satellite images can be used to identify spatial vegetation distribution. In this paper, we use these techniques for simple, cost-inexpensive (in both time and money) parameterization based on readily-available GIS and remotely-sensed data.

We use a previously developed, spatially-explicit model of the population dynamics of anAcacia species in the Negev desert of Israel (SAM, spatialAcacia model) to investigate if model initialization (measurement of current tree distribution) can be obtained from readily-available satellite images using a radiometric vegetation index (NDVI, normalized difference vegetation index). Furthermore, we investigate the applicability and the advantages of using an explicit consideration of landscape features in the model based on topographic data from a GIS. Using a DEM (digital elevation model), we compare the wadi topography to the current tree distribution observed in the field.

We found that the readily-available GIS and remotely-sensed data are not sufficient to significantly support the parameterization and further development of the model. We conclude that despite the possible benefit of linking spatially-explicit models with other techniques the advantage compared to data sampling in the field is limited by a possible mismatch of scales and the dominant role of stochasticity that may override the relevance of certain spatially-explicit information.

Keywords

Acacia raddiana Landscape related models NDVI Simulation model Spatially-explicit Wadi morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhtar M. &Kuschetzki A. (1990):Morphodynamische Prozesse und ihr Einfluss auf das Nutzungspotential in den Wadis der nördlichen Butana/Region Shendi (Republik Sudan) unter besonderer Berücksichtigung der 88er Starkregenereignisse. Diploma Thesis, Geographical Institute, University of Hannover, Hannover.Google Scholar
  2. Ashkenazi S. (1995):Atzei hashita banegev veba’arava: Seker beikvot tofaot hahityabshoot vehatmuta (Acaciatrees in the Negev and the Arava, Israel: A review following reported largescale mortality). Hakeren Hakayemet LeIsrael, Jerusalem.Google Scholar
  3. Bannari A., Morin D., Bonn F., &Huete A.R., (1995): A review of vegetation indices.Remote Sensing Rev. 13: 95–120.Google Scholar
  4. Bartelme N. (1995):Geoinformatik — Modelle, Structuren, Funktionen. Springer Verlag, Berlin, Heidelberg.Google Scholar
  5. Berkowitz A.R., Canham C.D. &Kelly V.R. (1995): Competition vs. facilitation of tree seedling growth and survival in early successional communities.Ecology 76: 1156–1168.CrossRefGoogle Scholar
  6. Callaway R.M. &Walker L.R. (1997): Competition and facilitation: A synthetic approach to interactions in plant communities.Ecology 78: 1958–1965.Google Scholar
  7. Chagarlamudi P. &Plunkett G.W. (1993): Mapping applications for low-cost remote sensing and geographic information systems.Int. J. Remote Sensing 14: 3181–3190.CrossRefGoogle Scholar
  8. Coughenour M.B. &Detling J.K. (1986):Acacia tortilis seed germination responses to water potential and nutrients.African J. Ecol. 24: 203–205.Google Scholar
  9. Danin A. (1983):Desert vegetation of Israel and Sinai. Cana Press, Jerusalem.Google Scholar
  10. DeAngelis D.L. &Gross L.J. (1992):Individual-based models and approaches in ecology: populations, communities and ecosystems. Chapman & Hall, New York.Google Scholar
  11. Durrett R. &Levin S.A. (1998): Spatial aspects of interspecific competition.Theor. Populat. Biol. 53: 30–43.CrossRefGoogle Scholar
  12. Gamon J.A., Field C.B., Goulden M.L., Griffin K.L., Hartley A.E., Joel G., Penuelas J. &Valentini R. (1995): Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types.Ecol. Appl. 5:28–41.CrossRefGoogle Scholar
  13. Green D.S. (1983): The efficacy of dispersal in relation to safe site density.Oecologia 56: 356–358.CrossRefGoogle Scholar
  14. Halevy G. (1974): Effects of gazelles and seed beetles (Bruchidae) on germination and establishment ofAcacia species.Israel J. Bot. 23: 120–126.Google Scholar
  15. Halevy G. &Orshan G. (1972): Ecological studies onAcacia species in the Negev and Sinai. I. Distribution ofAcacia raddiana, A. tortilis andA. gerrardii ssp.negevensis as related to environmental factors.Israel J. Bot. 21: 197–208.Google Scholar
  16. Holmgren M., Scheffer M. &Huston M.A. (1997): The interplay of facilitation and competition in plant communities.Ecology 78: 1966–1975.CrossRefGoogle Scholar
  17. Huete A.R. &Jackson R.D. (1987): Suitability of spectral indices for evaluating vegetation characteristics on arid rangelands.Remote Sensing Environm. 23: 213–232.CrossRefGoogle Scholar
  18. Jeltsch F., Milton S.J., Dean W.R.J. &van Rooyen N. (1996): Tree spacing and coexistence in semiarid savannas.J. Ecol. 84: 583–595.CrossRefGoogle Scholar
  19. Jeltsch F., Milton S.J. &Moloney K.A. (1999): Detecting process from snap-shot pattern — lessons from tree spacing in the southern Kalahari.Oikos 85: 451–467.CrossRefGoogle Scholar
  20. Kennenni L. &van der Maarel E. (1990): Population ecology ofAcacia tortilis in the semi-arid region of the Sudan.J. Veg. Sci. 1: 419–424.CrossRefGoogle Scholar
  21. King D., Walsh P. &Ciuffreda F. (1994): Airborne digital frame camera imaging for elevation determination.Photogramm. Engin. Remote Sensing 60: 1321–1326.Google Scholar
  22. Mack E.L., Firbank L.G., Bellamy P.E., Hinsley S.A. &Veitch N. (1997): The comparison of remotely sensed and ground-based habitat area data using species-area models.J. Appl. Ecol. 34: 1222–1228.CrossRefGoogle Scholar
  23. Miller M.F. (1994): The costs and benefits ofAcacia seed consumption by ungulates.Oikos 71: 181–187.CrossRefGoogle Scholar
  24. Molenaar M. (1998):An introduction to the theory of spatial object modelling for GIS. Taylor & Francis, London.Google Scholar
  25. Moore I.D., Grayson R.B. &Ladson A.R. (1991): Digital terrain modelling: a review of hydrological, geomorphological, and biological applications.Hydrol. Process 5: 3–30.CrossRefGoogle Scholar
  26. Paruelo J.M. &Golluscio R.A. (1994): Range assessment using remote sensing in Northwestern Patagonia (Argentina).J. Range Managem. 47: 498–502.CrossRefGoogle Scholar
  27. Peters A.J., Eve M.D., Holt E.H. &Whitford W.G. (1997): Analysis of desert plant community growth patterns with high temporal resolution satellite spectra.J. Appl. Ecol. 34: 418–432.CrossRefGoogle Scholar
  28. Rohner C. &Ward D. (1997): Chemical and mechanical defense against herbivory in two sympatric species of desertAcacia.J. Veg. Sci. 8: 717–726.CrossRefGoogle Scholar
  29. Rohner C. &Ward D. (1999): Large mammalian herbivores and the conservation of aridAcacia stands in the Middle East.Conservation Biol. 13: 1162–1171.CrossRefGoogle Scholar
  30. Rouse J.W., Haas R.H., Schell J.A., Deering D.W. &Harlan J.C. (1974):Monitoring the vernal advancements and retrogradation (Greenwave effect) of nature vegetation. NASA/GSFC Final Report, NASA, Greenbelt.Google Scholar
  31. Saltz D., Schmidt H., Rowen M., Karnieli A., Ward D. &Schmidt I. (1999): Assessing grazing impacts by remote sensing in hyper-arid environments.J. Range Managem. 52: 500–507.CrossRefGoogle Scholar
  32. Sharon D. (1972): The spottiness of rainfall in a desert area.J. Hydrol. 17: 161–175.CrossRefGoogle Scholar
  33. Stern E., Gradus Y., Meir A., Krakover S. &Tsoar H. (1986):Atlas of the Negev. Ben-Gurion University of the Negev, Dept. of Geography, Beer-Sheva.Google Scholar
  34. Tadmor N.H., Orshan G. &Rawitz E. (1962): Habitat analysis in the Negev desert of Israel.Bull. Res. Council Israel 11: 148–173.Google Scholar
  35. Thiéry J.M., D’Herbés J.-M. &Valentin C. (1995): A model simulating the genesis of banded vegetation patterns in Niger.J. Ecol. 83: 497–507.CrossRefGoogle Scholar
  36. Tucker C.J., Fung I.Y., Keeling C.D. &Gammon R.H. (1986): Relationship between atmospheric CO2 variations and a satellite-derived vegetation index.Nature 319: 195–199.CrossRefGoogle Scholar
  37. Tucker C.J., Townshend J.R.G. &Goff T.E. (1985): African landcover classification using satellite data.Science 227: 369–375.PubMedCrossRefGoogle Scholar
  38. Wadsworth R. &Treweek J. (1999):GIS for ecology: an introduction. Addison Wesley Longman, Harlow.Google Scholar
  39. Ward D. &Rohner C. (1997): Anthropogenic causes of high mortality and low recruitment in threeAcacia tree species in the Negev desert, Israel.Biodivers. Conservation 6: 877–893.CrossRefGoogle Scholar
  40. Wiegand K., Jeltsch F., Ward D. &Rohner C. (1998): Decline of the Negev’s Acacias — a spatially explicit simulation model as an aid for sustainable management. In:Usó J.L., Brebbia C.A. &Power H. (eds.),Ecosystems and sustainable development, Computational Mechanics Publications, Southhampton, pp. 63–72.Google Scholar
  41. Wiegand K., Jeltsch F. &Ward D. (1999a): Analysis of the population dynamics ofAcacia trees in the Negev desert, Israel with a spatially-explicit computer simulation model.Ecol. Modelling 117: 203–224.CrossRefGoogle Scholar
  42. Wiegand K., Jeltsch F. & Ward D. (2000): Do spatial effects play a role in the spatial distributions of desert dwelling Acacias?J. Veg. Sci. (in press).Google Scholar
  43. Wiegand K., Ward D., Thulke H.-H. & Jeltsch F. (1999b) From snap-shot information to long-term population dynamics of Acacias by a simulation model.Pl. Ecol. (in press).Google Scholar
  44. Wiegand T., Milton S.J. &Wissel C. (1995): A simulation model for a shrub ecosystem in the semiarid Karoo, South Africa.Ecology 76: 2205–2221.CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2000

Authors and Affiliations

  • Kerstin Wiegand
    • 1
  • Heike Schmidt
    • 2
  • Florian Jeltsch
    • 1
  • David Ward
    • 3
  1. 1.Department of Ecological ModellingUFZ Centre for Environmental Research Leipzig-HalleLeipzigGermany
  2. 2.The Remote Sensing Laboratory, Blaustein Institute for Desert ResearchBen Gurion University of the NegevSede Boqer CampusIsrael
  3. 3.Mitrani Department for Desert Ecology and Ramon Science Center, Blaustein Institute for Desert ResearchBen Gurion University of the NegevSede Boqer CampusIsrael

Personalised recommendations