Folia Geobotanica

, Volume 34, Issue 1, pp 143–161 | Cite as

Predicting presence of proazulenes in theAchillea millefolium group

Abstract

Phytosociological classification of vegetation is often justified on the grounds it provides a means of predicting properties other than floristic composition. It is difficult to find examples inliterature where this possibility of prediction is actually used. In this paper, we examine the qualitative variation in proazulenes of theAchillea millefolium group as a function of cytological, abiotic and floristic factors. Sixty-six sites in natural populations were examined. Twenty to forty individuals per site were tested in the field for the presence of proazulenes. Ploidy level of collected specimens was examined to differentiate between taxa within the aggregate. Soil analyses were also performed and species composition of the sites was recorded. The floristic data was classified and attributed to phytosociological units.

Canonical correspondence analysis was used to investigate the relationships between environment and floristic data, t-tests were performed and correlation coefficients were calculated to distinguish the mutual relationships between environmental factors, populations and relative frequency of proazulenes-containing individuals. In the area under study, hexaploid populations of yarrows were characterized by a low frequency of proazulenes. They were confined to dry and nutrient-poor habitats of fallows, slightly moist grasslands and fringes. Tetraploid populations consisted of different types. Both high and low frequencies of proazulenes-containing individuals occurred. A high frequency of such plants per site was positively correlated with phosphate, magnesium and manganese and negatively with carbonate and hydrogen ion concentration in soil.

The results show that effective prediction of proazulenes-containing individuals is possible from the species composition of the sites, which is a comparatively simple procedure avoiding more expensive cytological and chemical assessment.

Keywords

Canonical correspondence analysis Conservation of medicinal plants Floristic and abiotic habitat description Natural populations Phytosociology Secondary plant substances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbeitsgruppe Bodenkunde (1982):Bodenkundliche Kartieranleitung. Ed. 3. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Hannover.Google Scholar
  2. Bemmerlein F.A. &Fischer H.S. (1985): Das pflanzensoziologische Programmsystem am Regionalen Rechenzentrum Erlangen.Hoppea 44: 373–378.Google Scholar
  3. Biste C. (1978): Zytotaxonomische Untersuchungen des FormenkreisesAchillea millefolium (Asteraceae) in der DDR.Feddes Repert. 88: 533–613.CrossRefGoogle Scholar
  4. Braun-Blanquet J. (1964):Pflanzensoziologie. Grundzüge der Vegetationskunde. Ed. 3. Springer, Wien.Google Scholar
  5. Bugge G. (1991): Untersuchungen der Sippen desAchillea-millefolium-Komplexes auf Azulengehalt und Ploidiegrad.Angew. Bot. 65: 331–339Google Scholar
  6. Dabrowska J. (1972): Obserwacje rozmieszenia azulenowych i bezazulenovych formAchillea L. na Śląsku na tłe danych o rozmiesczeniu taksonów rodzajuAchillea L. na tym obszarze.Herba Polon. 18: 40–69.Google Scholar
  7. Dabrowska J. (1982): Systematic and geographic studies of the genusAchillea L. in Poland with special reference to Silesia.Acta Univ. Wratislav. 419. Prace Bot. 24: 1–222.Google Scholar
  8. Dierschke H. (1997):Synopsis der Pflanzengesellschaften Deutschlands. 3: Molinio-Arrhenatheretea. Selbstverlag der Floristisch-soziologischen Arbeitsgemeninschaft e.V., Göttingen.Google Scholar
  9. Ehrendorfer F. (1953): Systematische und cytogenetische Untersuchungen an europäischen Rassen desAchillea millefolium-Komplexes.Österr. Bot. Z. 100: 583–592.CrossRefGoogle Scholar
  10. Ehrendorfer F. (1957): Akzessorische Chromosomen, Kreuzungsfertilität und Polyploidie beimAchillea millefolium-Komplex (Compositae).Naturwissenschaften 44: 405–406.CrossRefGoogle Scholar
  11. Ehrendorfer F. (1962): Cytotaxonomische Beiträge zur Genese der mitteleuropäischen Flora und Vegetation.Ber. Deutsch. Bot. Ges. 75: 137–152.Google Scholar
  12. Ehrendorfer F. (ed.) (1973):Liste der Gefässpflanzen Mitteleuropas. Ed. 2. Fischer Verlag, Stuttgart.Google Scholar
  13. Fischer H.S. (1994) Simulation der räumlichen Verteilung von Pflanzengesellschaften auf der Basis von Standortskarten. Dargestellt am Beispiel des MaB-Testgebiets Davos.Veröff. Geobot. Inst. ETH Stiftung Rübel Zürich 122.Google Scholar
  14. Hauser K. (1988): Pflanzengesellschaften der mehrschürigen Wiesen (Molinio-Arrhenatheretea) Nordbayerns.Diss. Bot. 128.Google Scholar
  15. Hofmann L., Fritz D., Nits S., Kollmansberger H. &Drawert F. (1992): Essential oil composition of three polyploids in theAchillea millefolium “complex”.Phytochemistry 31: 537–542.CrossRefGoogle Scholar
  16. Jurenitsch J. (1992):Achillea. In:Hänsel R., Keller K., Rimpler H. &Schneider G.,Hagers Handbuch der Pharmazeutischen Praxis. 4: Drogen A-D, Springer Verlag, Berlin, Heidelberg, pp. 45–50.Google Scholar
  17. Lange D. (1996):Untersuchungen zum Heilpflanzenhandel in Deutschland. Ein Beitrag zum internationalen Artenschutz. Bundesamt für Naturschutz, Bonn, Bad Godesberg,Google Scholar
  18. Mather P.M. (1987):Computer processing of remotely-sensed images. Wiley, New York.Google Scholar
  19. Michler B., Preitschopf A., Erhard P. &Arnold C.-G. (1992):Achillea millefolium: Zusammenhänge zwischen Standortfaktoren, Ploidiegrad, Vorkommen von Proazulenen und Gehalt an Chamazulen im äterischen Öl.Pharm. Zeitung Wiss. 137: 23–29.Google Scholar
  20. Michler B. &Arnold C.-G. (1996): Pyrrolizidinalkaloide in Beinwellwurzeln. Ein Beispiel für die Variabilität sekundärer Pflanzeninhaltsstoffe.Deutsche Apotheker-Zeitung 136, 29: 15–20.Google Scholar
  21. Muller C.H. (1969): Allelopathy as a factor in ecological process.Vegetatio 18: 348–357.CrossRefGoogle Scholar
  22. Muller C.H. (1970): Phytotoxins as plant habitat variables.Recent Advances Phytochem. 3: 106–121.Google Scholar
  23. Oberdorfer E. (1978):Süddeutsche Pflanzengesellschaften II. Gustav Fischer Verlag, Stuttgart, New York.Google Scholar
  24. Oberdorfer E. (1983):Süddeutsche Pflanzengesellschaften III. Gustav Fischer Verlag, Stuttagart, New York.Google Scholar
  25. Oberdorfer E. (1994):Pflanzensoziologische Exkursionsflora. Ed. 6. Ulmer Verlag, Stuttgart.Google Scholar
  26. Preitschopf A. (1989):Achillea millefolium: Vorkommen — Ploidiestufe — Proazulenführung. Diploma Thesis, Universität Erlangen, Erlangen.Google Scholar
  27. Pudlatz H. (1975): Zur Transformation der Variablen bei mangelnder Normalverteilung.Giessener Geogr. Schriften 32: 29–33.Google Scholar
  28. Saukel J. &Länger R. (1992a): DieAchillea millefolium-Gruppe (Asteraceae) in Mitteleuropa, 1 — Problemstellung, Merkmalserhebung und Untersuchungsmaterial.Phyton (Horn, Austria) 31: 185–207.Google Scholar
  29. Saukel J. &Länger R. (1992b): DieAchillea millefolium-Gruppe (Asteraceae) in Mitteleuropa, 2 — Populationsvergleich, multivariate Analyse und biosystematische Anmerkungen.Phyton (Horn, Austria) 32: 47–78.Google Scholar
  30. Saukel J. &Länger R. (1992c):Achillea pratensisSaukel & Länger, spec. nova, eine tetraploide Sippe derAchillea millefolium-Gruppe.Phyton (Horn, Austria) 32: 159–172.Google Scholar
  31. Schlee D. (1992):Ökologische Biochemie. Ed. 2. Fischer Verlag, Jena.Google Scholar
  32. Stahl E. (1952): Ist der Proazulengehalt der Schafgarbe (Achillea millefolium L.) genetisch oder umweltbedingt?Parmazie 7: 863–868.Google Scholar
  33. Stahl E. (1953): Mikro-Azulennachweismethode für Schafgarben.Deutsche Apotheker-Zeitung 12: 197–200.Google Scholar
  34. ter Braak C.J.F. (1988):CANOCO — a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1). Technical report: LWA8802. Agricultural Mathematics Group, Wageningen.Google Scholar
  35. ter Braak C.J.F. (1990):Update notes: CANOCO Version 3.10. Agricultural Mathematics Group, Wageningen.Google Scholar
  36. VDLUFA (1991):Methodenbuch 1, Die Untersuchung von Böden. VDLUFA-Verlag, Darmstadt.Google Scholar
  37. Vetter S. (1995): Kreuzungsexperimente mit tetraploiden Sippen derAchillea millefolium-Gruppe (Asteraceae): Sesquiterpene und morphologische Merkmale hybridogener F1-Populationen im Vergleich.Liner Biol. Beitr. 27: 1161–1211.Google Scholar
  38. Vetter S. &Franz Ch. (1998): Samenbildung bei Kreuzungen und Selbstungen mit polyploidenAchillea-Arten (Asteraceae).Z. Arznei- Gewürzpflanzen 3: 11–14.Google Scholar
  39. Westhoff V. &van der Maarel E. (1973): The Braun-Blanquet approach. In:Whittaker R.H. (ed.),Classification of Plant communities, Junk Verlag, The Hague, pp. 287–399Google Scholar
  40. Wildi O. &Orlóci L. (1990):Numerical exploration of community patterns. SPB Academic Publishing, The Hague.Google Scholar
  41. Wildi O. (1989): A new numerical solution to traditional phytosociological tabular classification.Vegetatio 81: 95–106.CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 1999

Authors and Affiliations

  1. 1.RöttenbachGermany
  2. 2.Institut für Botanik und Pharmazeutische BiologieErlangenGermany

Personalised recommendations