Molecular Neurobiology

, Volume 17, Issue 1–3, pp 87–108 | Cite as

Corticosteroids in the brain

Cellular and molecular actions
  • Marian JoËls
  • Erno Vreugdenhil
Original Articles


The rat adrenal hormone corticosterone reaches the brain and binds to intracellular receptors. These receptors comprise high-affinity mineralocorticoid and lower-affinity glucocorticoid receptors that, upon activation, affect the transcription rate of specific genes. The two receptor types are discretely localized in the brain, with particularly high expression levels in the hippocampus. Here we review recent studies showing that electrical properties and structural aspects of hippocampal principal neurons are specifically regulated by mineralocorticoid- or glucocorticoid-receptor activation. The molecular mechanisms by which these cellular effects could be accomplished are discussed.

Index Entries

Corticosteroid hormones mineralocorticoid receptor glucocorticoid receptor signal transduction morphology hippocampus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahima R. S. and Harlan R. E. (1990) Charting of Type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system.Neuroscience 39, 579–604.PubMedGoogle Scholar
  2. Ahima R., Krozowski Z., and Harlan, R. (1991) Type I corticosteroid receptor-like immunoreactivity in the rat CNS: distribution and regulation by corticosteroids.J. Comp. Neurol. 313, 522–538.PubMedGoogle Scholar
  3. Andrade R. and Nicoll R. A. (1997) Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro.J. Physiol. 394, 99–124.Google Scholar
  4. Aronsson M., Fuxe K., Dong Y., Agnati L. E., Okret S., and Gustafsson J. A. (1988) Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization.Proc. Natl. Acad. Sci. USA 85, 9331–9335.PubMedGoogle Scholar
  5. Arriza J. L., Simerly R. B., Swanson L. W., and Evans R. M. (1988) The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response.Neuron 1, 887–900.PubMedGoogle Scholar
  6. Arriza J. L., Weinberger C., Cerelli G., Glaser T. M., Handelin B. L., Housman D. E., and Evans R. M. (1987) Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptors.Science 237, 268–275.PubMedGoogle Scholar
  7. Auerbach J. M. and Segal M. (1996) Muscarinic receptor mediated depression and LTP in rat hippocampus.J. Physiol. 492, 479–493.PubMedGoogle Scholar
  8. Auphan N., Didonato J. A., Rosette C., Helmberg A., and Karin M. (1995) Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis.Science 270, 286–90.PubMedGoogle Scholar
  9. Bamberger C. M., Schulte H. M., and Chrousos G. P. (1996) Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids.Endocrinol. Rev. 17, 245–261.Google Scholar
  10. Bamberger C. M., Bamberger A. M., de Castro M., and Chrousos G. P. (1995) Glucocorticoid receptor Β, a potential endogeneous inhibitor of glucocorticoid action in humans.J. Clin. Invest. 95, 2435–2441.PubMedGoogle Scholar
  11. Barbany G. and Perrson H. (1993) Adrenalectomy attenuates kainic acid-elicited increases of messenger RNAs for neurotrophins and their receptors in the rat brain.Neuroscience 54, 909–922.PubMedGoogle Scholar
  12. Beck S. G., Choi K. C., List T. J., Okuhara D. Y. and Birnstiel S. (1996) Corticosterone alters 5-HT1a receptor-mediated hyperpolarization in area CA1 hippocampal pyramidal neurons.Neuropsychopharmacol. 14, 27–33.Google Scholar
  13. Beck S. G., List T. J., and Choi K. C. (1994) Longand short-term administration of corticosterone alters CA1 hippocampal neuronal properties.Neuroendocrinology 60, 261–272.PubMedGoogle Scholar
  14. Birnstiel S. and Beck S. G. (1995) Modulation of the 5-hydroxytryptamine (4) receptor-mediated response by short-term and long-term administration of corticosterone in rat CA1 hippocampal pyramidal neurons.J. Pharmacol. Exp. Ther. 273, 1132–1138.PubMedGoogle Scholar
  15. Bloem L.J., Guo C., and Pratt J. H. (1995) Identification of a splice variant of the rat and human mineralocorticoid receptor genes.J. Steroid Biochem. Molec. Biol. 55, 159–162.PubMedGoogle Scholar
  16. Cameron H. A. and Gould E. (1994) Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus.Neuroscience 61, 203–209.PubMedGoogle Scholar
  17. Chalmers D. T., Kwak S. P., Mansour A., and Watson S. J. (1993) Corticosteroids regulate brain hippocampal 5HTla receptor mRNA expression.J. Neurosci. 13, 914–923.PubMedGoogle Scholar
  18. Chan Palay V. and Kohler Ch. (1989)The Hippocampus: New Vistas. Allan R. Liss, New York.Google Scholar
  19. Chao H. M. and McEwen B. S. (1994) Glucocorticoids and the expression of mRNAs for neurotrophins, their receptors and GAP-43 in the rat hippocampus.Mol. Brain Res. 26, 271–276.PubMedGoogle Scholar
  20. Chao H. M., Choo P. H., and McEwen B. S. (1989) Glucocorticoid and mineralocorticoid receptor mRNA expression in rat brain.Neuroendocrinology 50, 365–372.PubMedGoogle Scholar
  21. Chee M., Yang R., Hubbell E., Berno A., Huang X. S., Sern D., Winkler J., Lockhart D. J., Morris M. S., and Fodor S. P. (1996) Accessing genetic information with high-density DNA arrays.Science 274, 610–614.PubMedGoogle Scholar
  22. Coirini H., Magarinos A. M., DeNicola A. F., Rainbow T., and McEwen B. S. (1985). Further studies of brain aldosterone binding sites employing new mineralocorticoid and glucocorticoid receptor markers in vitro.Brain Res. 361, 212–216.PubMedGoogle Scholar
  23. Cole T. J., Blendy J. A., Monaghan A. P., Krieglstein K., Schmid W., Aguzzi A., Fantuzzi G., Hummler E., Unsicker K., and Schütz G. (1995) Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation.Genes Dev. 9, 1608–1621.PubMedGoogle Scholar
  24. Dallman M. F. (1993) Stress update. Adaptation of the hypothalamic-pituitary adrenal axis to chronic stress.Trends Endocrinol. Metab. 4, 62–69.Google Scholar
  25. Defie A., Wu H., Reinke V., and Lozano G. (1993) The tumor suppressor p53 regulates its own transcrition.Mol. Cell Biol 13, 3415–3423.Google Scholar
  26. De Kloet E. R. (1991) Brain corticosteroid receptor balance and homeostatic control.Front. Neuroendocrinol. 12, 95–164.Google Scholar
  27. De Kloet E. R., Vreugdenhil E., Oitzl M. S., and JoËls M. (1997) Glucocorticoid feedback resistance.Trends Endocrinol. Metab. 8, 26–33.Google Scholar
  28. De Kloet E. R., Wallach G., and McEwen B. S. (1975) Differences in corticosterone and dexamethasone binding to rat brain and pituitary.Endocrinology 96, 598–609.PubMedGoogle Scholar
  29. Drouin J., Sun Y. L., Chamberland M., Gauthier Y., De L. A., Nemer M., and Schmidt T. J. (1993) Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene.EMBO J. 12, 145–156.PubMedGoogle Scholar
  30. Eberwine, J., Spencer, C., Miyashiro, K., Mackler, S. and Finnell, R. (1992) cDNA synthesis in situ: methods and applications, inMethods in Enzymology, Recombinant DNA, vol. 216 (Wu, G. R. ed.), Academic, pp. 80–100.Google Scholar
  31. Elliot E. M. and Sapolsky R. M. (1992) Corticosterone enhances kainic acid induced calcium elevation in cultured hippocampal neurons.J. Neurochem. 59, 1033–1040.Google Scholar
  32. Elliot E. M. and Sapolsky R. M. (1993) Corticosterone impairs hippocampal neuronal calcium regulation-possible mediating mechanisms.Brain Res. 602, 84–90.Google Scholar
  33. Encio I. J. and Detera-Wadleigh S. D. (1991) The genomic structure of the human glucocorticoid receptor.J. Biol. Chem. 266, 7182–7188.PubMedGoogle Scholar
  34. Evans R. M. (1988) The steroid and thyroid hormone receptor superfamily.Science 240, 889–895.PubMedGoogle Scholar
  35. Funder J. W. (1993) Mineralocorticoids, glucocorticoids, receptors and response elements.Science 259, 1132–1133.PubMedGoogle Scholar
  36. Fuxe K., Wikstrom A. C., Okret S., Agnatie L. F., Harfstrand A., Yu Z-Y., Granholm L., Zoli M., Vale W., and Gustafsson, J-A. (1985) Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel- and diencephalon using a monoclonal antibody against rat liver glucocnrticoid receptors.Endocrinology 117, 1803–1812.PubMedGoogle Scholar
  37. Gould E., Cameron H. A., and McEwen B. S. (1994) Blockade of NMDA receptors increases cell death and birth in the developing rat dentate gyrus.J Comp. Neurol. 340, 551–565.PubMedGoogle Scholar
  38. Gould E. and McEwen B. S. (1993) Neuronal birth and death.Curr. Opi. Neurobiol. 3, 676–682.Google Scholar
  39. Guardiola-Diaz H. M., Kolinske J. S., Gates L. H., and Seasholtz A. F. (1996) Negative glucocorticoid regulation of cyclic adenosine 3’,5’-monophosphate-stimulated corticotropin-releasing hormonereporter expression in AtT-20 cells.Mol. Endocr. 10, 317–329.Google Scholar
  40. Hassan A. H., von Rosenstiel P., Patchev V. K., Holsboer F., and Almeida O. F. (1996) Exacerbation of apoptosis in the dentate gyrus of the aged rat by dexamethasone and the protective role of corticosterone.Exp. Neurol. 140, 43–52.PubMedGoogle Scholar
  41. Heck S., Kullmann M., Gast A., Ponta H., Rahmsdorf H. J., Herrlich P., and Cato A. C. B. (1994) A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of transcription factor AP-1.EMBO J. 13, 4087–4095.PubMedGoogle Scholar
  42. Herman J. P., Patel P. D., Akil H., and Watson S. J. (1989) Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat.Mol. Endocrinol. 3, 1886–1894.PubMedGoogle Scholar
  43. Herman J. P. and Cullivan W. E. (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis.Trends Neurosci. 20, 78–84.PubMedGoogle Scholar
  44. Hesen W., Karst H., Meijer O., Cole T. J., Schmid W., de Kloet E. R., Schütz G., and JoËls M. (1996) Hippocampal cell responses in mice with a targeted glucocorticoid receptor gene disruption.J. Neurosci. 16, 6766–6774.PubMedGoogle Scholar
  45. Hesen W., Karten Y. J. G., van de Witte S. V., and JoËls M. (1998) Serotonin and carbachol induced suppression of synaptic excitability in rat CA1 hippocampal area: effects of corticosteroid receptor activation.J. Neuroendocrinol.,10, 9–19.PubMedGoogle Scholar
  46. Hesen W. and JoËls M. (1993) Modulation of carbachol responsiveness in rat CA1 pyramidal neurons by corticosteroid hormones.Brain Res. 627, 159–167.PubMedGoogle Scholar
  47. Hesen W. and JoËls M. (1996) Modulation of 5HT1A responsiveness in CA1 pyramidal neurons by in vivo activation of corticosteroid receptors.J. Neuroendocrinol. 8, 433–438.PubMedGoogle Scholar
  48. Hesen W. and JoËls M. (1996) Cholinergic responsiveness of rat CA1 hippocampal neurons in vitro: modulation by corticosterone and stress.Stress 1, 65–73.PubMedGoogle Scholar
  49. Hollenberg S. M., Weinberger C., Ong E. S., Cerelli G., Oro A., Lebo R., Thompson E. B., Rosenfeld M. G., and Evans R. M. (1985) Primary structure and expression of a functional human glucocorticoid receptor cDNA.Nature 318, 635–641.PubMedGoogle Scholar
  50. Holmes M. C., Yau J. L., French K. L., and Seckl J. R. (1995) The effect of adrenalectomy on 5-hydroxytryptamine and corticosteroid receptor subtype messenger RNA expression in the rat.Neuroscience 64, 327–337.PubMedGoogle Scholar
  51. Hornsby C. D. and de Kloet E. R. (1994) Dexamethasone does not prevent apoptosis in the hippocampus of the rat, inBrain Corticosteroid receptors, (de Kloet E. R., Azmitia E. C., and Landfield P. W., eds.) New York Acadamy of Sciences, New York, pp. 470–472.Google Scholar
  52. Hornsby C. D., Grootendorst J., and de Kloet E. R. (1996) Dexamethasone does not prevent sevenday ADX-induced apoptosis in the dentate gyrus of the rat hippocampus.Stress 1, 51–64.PubMedGoogle Scholar
  53. Jaarsma D., Postema F., and Korf J. (1992) Time course and distribution of neuronal degeneration in the dentate gyrus of rat after adrenalectomy: a silver impregnation study.Hippocampus 2, 143–150.PubMedGoogle Scholar
  54. JoËls M. and de Kloet E. R. (1992) Control of neuronal excitability by corticosteroid hormones.Trends Neurosci. 15, 25–30.PubMedGoogle Scholar
  55. JoËls M. and de Kloet E. R. (1994) Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems.Progr. Neurobiol. 43, 1–36.Google Scholar
  56. JoËls M. (1997) Steroid hormones and excitability in the mammalian brain.Front. Neuroendocrinol. 18, 2–48.PubMedGoogle Scholar
  57. JoËls M. and de Kloet E. R. (1989) Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus.Science 245, 1502–1505.PubMedGoogle Scholar
  58. JoËls M., Werkman T., Karst H., Juta T., and Wadman W. (1998) Corticosteroids and calcium homeostasis: implication for neuroprotection and neurodegeneration, inNew Frontiers in Stress Research, Modulation of Brain Function, 40th OHOLO Conference, (de Kloet E. R., Ben Nathan D., Grauer E., and Levy D., eds.) Harwood, Chichester, UK, pp. 95–104.Google Scholar
  59. JoËls M. and de Kloet E. R. (1990) Mineralocorticoid receptor-mediated changes in membrane properties of rat CA1 pyramidal neurons in vitro.Proc. Natl. Acad. Sci. USA 87, 4495–4498.PubMedGoogle Scholar
  60. JoËls M., Hesen W., and de Kloet E. R. (1991) Mineralocorticoid hormones suppress serotonininduced hyperpolarization of rat hippocampal CA1 neurons.J. Neurosi. 11, 2288–2294.Google Scholar
  61. JoËls M. and de Kloet E. R. (1992) Coordinative mineralocorticoid and glucocorticoid receptormediated control of responses to serotonin in rat hippocampus.Neuroendocrinology 55, 344–350.PubMedGoogle Scholar
  62. Karst H., Wadman W. J., and JoËls M. (1994) Corticosteroid receptor-dependent modulation of calcium currents in rat hippocampal CA1 neurons.Brain Res. 649, 234–242.PubMedGoogle Scholar
  63. Karst H., Werkman T. R., Struik M., Bosma A., and JoËls M. (1997) Influence of adrenalectomy on Ca2+-currents and Ca2+-channel subunit mRNA expression in hippocampal CA1 neurons of young rats.Synapse 26, 155–164.PubMedGoogle Scholar
  64. Karst H., Wadman W. J., and JoËls M. (1993) Longterm control by corticosteroids of the inward rectifier in rat CA1 pyramidal neurons, in vitro.Brain Res. 612. 172–179.PubMedGoogle Scholar
  65. Karst H., and JoËls M. (1991) The induction of corticosteroid actions on membrane properties of hippocampal CA1 neurons requires protein synthesis.Neurosci. Lett. 130, 27–32.PubMedGoogle Scholar
  66. Kerr D. S., Campbell L. W., Hao S-Y, and Landfield P. W. (1989) Corticosteroid modulation of hippocampal potentials: increased effect with aging.Science 245, 1505–1507.PubMedGoogle Scholar
  67. Kerr D. S., Campbell L. W., Thibault O., and Land-field P. W. (1992) Hippocampal glucocorticoid receptor activation enhances voltage-dependent Ca conductances: relevance to brain aging.Proc. Natl. Acad. Sci. USA 89, 8527–8531.PubMedGoogle Scholar
  68. Knöpfel T., Vranesic I., GÄhwiler B. H., and Brown D. A. (1995) Muscarinic and Β-adrenergic depression of the slow Ca2+-activated potassium conductance in hippocampal CA3 pyramidal cells is not mediated by a reduction of depolarizationinduced cytosolic Ca2+ transients.Proc. Natl. Acad. Sci. USA 87, 4083–4087.Google Scholar
  69. Krozowski Z. K. and Funder, J. W. (1983) Renal mineralocorticoid receptors and hippocampal corticosterone binding species have intrinsic steroid specificity.Proc. Natl. Acad. Sci. USA 80, 6056–6060.PubMedGoogle Scholar
  70. Kwak S. P., Patel P. D., Thompson R. C., Akil H., and Watson S. J. (1993) 5’-Heterogeneity of the mineralocorticoid receptor messenger ribonucleic acid: differential expression and regulation of splice variants within the rat hippocampus.Endocrinology 133, 2344–2350.PubMedGoogle Scholar
  71. Lambert J. J., Belelli D., Hill-Venning C., and Peters J. A. (1995) Neurosteroids and GABAa receptor function.Trends Pharmacol. Sci. 16, 295–303.PubMedGoogle Scholar
  72. Leach Scully J. and Otten U. (1997) Glucocorticoid modulation of neurotrophin expression in immortalized mouse hippocampal neurons.Neurosci. Lett. 155, 11–14.Google Scholar
  73. Lefstin J. A., Thomas J. R., and Yamamoto K. R. (1994) Influence of a steroid receptor DNA-binding domain on transcriptional regulatory functions.Genes Dev. 8, 2842–2856.PubMedGoogle Scholar
  74. Liang P. and Pardee A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.Science 257, 967–971.PubMedGoogle Scholar
  75. Liao B., Miesak B., and Azmitia E. C. (1993) Loss of 5-HT1A receptor mRNA in the dentate gyrus of the long-term adrenalectomized rats and rapid reversal by dexamethasone.Mol. Brain Res. 19, 328–332.PubMedGoogle Scholar
  76. Lipton S. A. (1997) Janus faces of NF-kappa B: Neurodestruction versus neuroprotection.Nature Medicine 3, 20–22.PubMedGoogle Scholar
  77. Liu W., Wang J., Sauter N. K., and Pearce D. (1995) Steroid receptor heterodimerization demonstratedin vitro and in vivo.Proc. Natl. Acad. Sci. USA 92, 12480–12484.PubMedGoogle Scholar
  78. Luine V., Martinez C., Villegas M., Magarinos A. M., and McEwen B. S. (1996) Restraint stress reversibly enhances spatial memory performance.Physiol. Behav. 59, 27–32.PubMedGoogle Scholar
  79. Magarinos A. M., McEwen B. S., Flugge G., and Fuchs E. (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews.J. Neurosci. 16, 3534–3540.PubMedGoogle Scholar
  80. Maiyar A. C., Phu P. T., Huang A. J., and Firestone G. L. (1997) Repression of glucocorticoid receptor transactivation and DNA binding of a glucocorticoid responsive element within the serum/glucocorticoid-inducible protein kiase (SKG) gene promotor by the p53 tumor suppressor protein.Mol. Endocrinol. 11, 312–329.PubMedGoogle Scholar
  81. Majewska M. D. (1992) Neurosteroids: Endogenous bimodal modulators of the GABAa receptor. Mechanism of action and physiological significance.Prog. Neurobiol. 38, 379–395.PubMedGoogle Scholar
  82. McEwen B. S., de Kloet E. R., and Rostene W. (1986) Adrenal steroid receptors and actions in the nervous system.Physiol. Rev. 66, 1121–1188.PubMedGoogle Scholar
  83. McEwen B. S., Weiss J. M., and Schwartz L. S. (1968) Selective retention of corticosterone by limbic structures in rat brain.Nature 220, 911–912.PubMedGoogle Scholar
  84. McEwen B. S. and Sapolsky R. M. (1995) Stress and cognitive function.Curr. Opi. Neurobiol. 5, 205–216.Google Scholar
  85. Meberg P.J., Kinney W. R., Valcourt E. G., and Routtenberg A. (1996) Gene expression of the transcription factor NF-kappa B in hippocampus: regulation by synaptic activity.Mol. Brain Res. 38, 179–190.PubMedGoogle Scholar
  86. Meijer O. C. and de Kloet E. R. (1994) Corticosterone suppresses the expression of 5-HT1a receptor mRNA in rat dentate gyrus.Eur. J. Pharmacol. 266, 255–261.PubMedGoogle Scholar
  87. Meijer O. C. and de Kloet E. R. (1998) Corticosterone and serotonergic neurotransmission in the hippocampus: functional implications of central corticosteroid receptor diversity.Critical Rev. Neurobiol,12, 1–20.Google Scholar
  88. Mendelsohn S. D. and McEwen B. S. (1992) Autoradiographic analyses of the effects of adrenalectomy and corticosterone on 5HT1A and 5HT1B receptors in the dorsal hippocampus and cortex of the rat.Neuroendocrinology 55, 444–451.Google Scholar
  89. Meyer J. S. (1985) Biochemical effects of corticosteroids on neural tissues.Physiol. Rev. 65, 946–1020.PubMedGoogle Scholar
  90. Minichiello L. and Klein R. (1996) TrkB and TrkC neurotrophin receptors cooperatein promoting survival of hippocampal and cerebellar granule neurons.Genes Bevel. 10, 2849–2858.Google Scholar
  91. Miyashiti T., Krajewski S., Krajewski M., Wang H. G., Lin H. K., Liebermann D. A., Hoffman B., and Reed J. C. (1994) Tumor suppressor gene p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo.Oncogene 9, 1799–1805.Google Scholar
  92. Miyashita T. and Reed J. C. (1995) Tumor Suppressor p53 is a direct transcriptional activator of the human bax gene.Cell 80, 293–299.PubMedGoogle Scholar
  93. Nair S. M., Werkman T. R., Craig J., Finnell R., JoËls M., and Eberwine J. H. (1998) Corticosteroid regulation of ion channel conductances and mRNA levels in individual hippocampal CA1 neurons.J. Neurosci. 18, 2685–2696.PubMedGoogle Scholar
  94. Nicoll R. A., Malenka R. C., and Kauer J. A. (1990) functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system.Physiol. Rev. 70, 513–565.PubMedGoogle Scholar
  95. Oakley R. H., Sar M., and Cidlowski J. A. (1996) The human glucocorticoid receptor Β-isoform. Expression, biochemical properties and putative function.J. Biol. Chem. 271, 9550–9559.PubMedGoogle Scholar
  96. Oitzl M. S. and de Kloet E. R. (1992) Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning.Behav. Neuroscience 106, 62–71.Google Scholar
  97. Okuhara D. Y., Beck S. G., and Muma N. A. (1997) Corticosterone alters G protein a-subunit levels in the rat hippocampus.Brain Res 745, 144–151.PubMedGoogle Scholar
  98. O’Neill L. A. J. and Kaltschmidt C. (1997) NF-kappaB: a crucial transcription factor for glial and neuronal cell function.Trends Neurosci. 20, 252–258.PubMedGoogle Scholar
  99. Packan D. R. and Sapolsky R. M. (1990) Glucocorticoid endangerment of the hippocampus: tissue, steroid and receptor specificity.Neuroendocrinology 51, 613–618.PubMedGoogle Scholar
  100. Paul S. M. and Purdy R. H. (1992) Neuroective steroids.FASEB J. 6, 2311–2322.PubMedGoogle Scholar
  101. Pearce D. and Yamamoto K. R. (1993) Mineralocorticoid and glucocorticoid receptor activities distinguished by nonreceptor factors at a composite response element.Science 259, 1161–1165.PubMedGoogle Scholar
  102. Pfaff D. W., Silva M. T. A., and Weiss J. M. (1971) Telemetered recording of hormone effects on hippocampal neurons.Science 171, 394–395.Google Scholar
  103. Pfahl M. (1993) Nuclear receptor / AP-1 interaction.Endocrinol. Rev. 14, 651–658.Google Scholar
  104. Qiao, X. X., Hughes P. E., Venero J. L., Dugichdjevic M. M., Nichols N. R., Hefti F., and Knusel B. (1996) NT 4/5 protects against adrenalectomy induced apoptosis of rat hippocampal granule cells.Neuroreport 7, 682–686.PubMedGoogle Scholar
  105. Ray A. and Prefontaine K. E. (1994) Physical interaction and functional antagonism between the p65 subunit of transcrition factor NF-kappaB and the glucocorticoid receptor.Proc. Natl. Acad. Sci. USA 91, 752–756.PubMedGoogle Scholar
  106. Reul J. M. H. M. and de Kloet E. R. (1985) Two receptor systems for corticosterone in rat brain: microdissection and differential occupation.Endocrinology 117, 2505–2512.PubMedGoogle Scholar
  107. Reul J. M. H. M., Van den Bosch J. R., and de Kloet, E. R. (1987a) Differential response of type 1 and type 2 corticosteroid receptors to changes in plasma steroid levels and circadian rhythmicity.Neuroendocrinology 45, 407–412.PubMedGoogle Scholar
  108. Reul J. M. H. M., Van den Bosch J. R., and de Kloet, E. R. (1987b) Relative occupation of type 1 and type 2 corticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications.J. Endocrinol. 115, 459–467.PubMedGoogle Scholar
  109. Saito N., Guitart X., Hayward M., Tallman J. F., Duman R. S., and Nestler E.J. 1989 Corticosterone differentially regulates the expression of Gsa and Gia messenger RNA and protein in rat cerebral cortex.Proc. Natl. Acad. Sci. USA 86, 3906–3910.PubMedGoogle Scholar
  110. Sakhi S., Bruce A., Sun N., Tocco G., Baudry M., Schreiber S. S. (1994) p53 induction is associated with neuronal damage in the central nervous system.Proc. Natl. Acad. Sci. USA 91, 7525–7579.PubMedGoogle Scholar
  111. Sapolsky R., Krey L., and McEwen B. (1985) Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging.J. Neurosci. 5, 1221–1227.Google Scholar
  112. Sapolsky R. M. (1996) Stress, glucocorticoids, and damage to the nervous system: the current state of confusion.Stress 1, 1–19.PubMedGoogle Scholar
  113. Schaaf M. J. M., Hoetelmans R. W. M., de Kloet E. R. and Vreugdenhil E. (1997) Corticosterone regulates expression of BDNF and trkB, but not NT-3 and trkC mRNA in the rat hippocampus.J. Neurosci. Res., in press.Google Scholar
  114. Schmitz D., Empson R. M., and Heinemann U. (1995) Serotonin and 8-OH-DPAT reduce excitatory synaptic transmission in rat hippocampal area via reduction in presumed presynaptic Ca2+ entry.Brain Res. 701, 249–254.PubMedGoogle Scholar
  115. Schreiber S. S., Sakhi S., Dugichdjordjevic M. M., and Nichols N. R. (1994) Tumor suppressor p53 induction and DNA damage in hippocampal granule cells after adrenalectomy.Exp. Neurol. 30, 368–376.Google Scholar
  116. Sloviter R. S., Dean E., Sollas A. L., and Goodman J. H. (1996) Apoptosis and necrosis induced in different hippocampal neuron populations by repetitive perforant path stimulation in the rat.J Comp. Neurol. 366, 516–533.PubMedGoogle Scholar
  117. Sloviter R. S., Sollas A. L., Dean E., and Neubort S. (1993) Adrenalectomy-induced granule cell degeneration in the rat hippocampal dentate gyrus: characterization of an in vivo model of controlled neuronal death.J Comp. Neurol. 330, 324–336.PubMedGoogle Scholar
  118. Sloviter R. S., Sollas A. L., and Neubort S. (1995) Hippocampal dentate granule cell degeneration after adrenalectomy in the rat is not reversed by dexamethasone.Brain Res. 682, 227–230.PubMedGoogle Scholar
  119. Sloviter R. S., Valiquette G., Abrams G. M., Ronk E., Sollas A., Paul L. A., and Neubort S. (1989) Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy.Science 243, 535–538.PubMedGoogle Scholar
  120. Smith D. F. and Toft D. O. (1993) Steroid receptors and their associated proteins.Mol. Endocrinol. 7, 4–11.PubMedGoogle Scholar
  121. Smith M. A., Makino S., Kvetnansky R., and Post R. M. (1995) Stress and glucocorticoids affect the expression of Brain Derived Neurotrophic Factor and Neurotrophin 3 mRNAs in the hippocampus.J. Neurosci. 15, 1768–1777.PubMedGoogle Scholar
  122. Storm J. F. (1990) Potassium currents in hippocampal pyramidal cells.Progr. Brain Res. 83, 161–187.Google Scholar
  123. Thibault O., and Landfield P. W. (1996) Increase in single L-type calcium channels in hippocampal neurons during aging.Science 272, 1017–1020.PubMedGoogle Scholar
  124. Trapp T., Rupprecht R., Castren M., Reul J. M., and Holsboer F. (1994) Heterodimerization between mineralocorticoid and glucocorticoid receptor: a new principle of glucocorticoid action in the CNS.Neuron 13, 1457–1462.PubMedGoogle Scholar
  125. Truss M. and Beato M. (1993) Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors.Endocr. Rev. 14, 459–479.PubMedGoogle Scholar
  126. Unlap T. and Jope R. S. (1994) Dexamethasone attenuates kainate-induced AP-1 activation in rat brain.Mol. Brain Res. 24, 275–282.PubMedGoogle Scholar
  127. Unlap T. and Jope R. S. (1995) Diurnal variation in kainate-induced AP-1 activation in rat brain: influence of glucocorticoids.Mol Brain Res. 28, 193–200.PubMedGoogle Scholar
  128. Van Eekelen, J. A. M., Jiang, W., de Kloet, E. R., and Bohn, M. C. (1988) Distribution of the mineralocorticoid and glucocorticoid receptor mRNAs in the rat hippocampus.J. Neurosci. Res. 21, 88–94.PubMedGoogle Scholar
  129. Van Eekelen J. A. M., Kiss J. Z., Westphal H. M., and de Kloet, E. R. (1987) Immunocytochemical study on the intracellular localization of the Type 2 glucocorticoid receptor in the rat brain.Brain Res. 436, 120–128.PubMedGoogle Scholar
  130. Van Steensel B., van Binnendijk E. P., Hornsby C. D., van der Voort H. T. M., de Kloet E. R., and van Driel R. (1995) Partial cocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampal neurons.J.Cell Sci. 109, 787–792.Google Scholar
  131. Velculescu V. U., Zhang L., Vogelstein B., and Kinzler K. W. (1995) Serial analysis of gene expression.Science 270, 484–487.PubMedGoogle Scholar
  132. Vreugdenhil E., de Jong J., Schaaf M. J. M., Meijer O. C., Busscher J., Vuijst C., and de Kloet E. R. (1996) Molecular dissection of corticosteroid action in the rat hippocampus.J. Mol. Neurosci. 7, 135–146.PubMedGoogle Scholar
  133. Werkman T. R., van der Linden S., and JoËls M. (1997) Corticosteroid effects on Na+ and Ca2+ currents in acutely dissociated rat CA1 hippocampal neurons.Neuroscience 78, 663–672.PubMedGoogle Scholar
  134. Woolley C. S., Gould E., and McEwen B. S. (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons.Brain Res. 531, 225–231.PubMedGoogle Scholar
  135. Woolley C. S., Gould E., Sakai R. R., Spencer R. L., and McEwen B. S. (1991) Effects of aldosterone or RU28362 treatment on adrenalectomy-induced cell death in the dentate gyrus of the adult rat.Brain Res. 554, 312–315.PubMedGoogle Scholar
  136. Yang N. N., Venugopalan M., Hardikar S., and Glasebrook A. (1996) Identification of an estrogen response element activated by metabolites of 17-estradiol amd raloxifene.Science 273, 1222–1225.PubMedGoogle Scholar
  137. Zeise M. L., Teschemacher A., Arriagada J., and ZieglgÄnsberger W. (1992) Corticosterone reduces synaptic inhibition in rat hippocampal and neocortical neurons in vitro.J. Neuroendocrinol. 4, 107–112.Google Scholar
  138. Zennaro M., Keightley C., Kotelevtsev Y., Conway G. S., Soubrier F., and Fuller P. J. (1995) Human mineralocorticoid receptor genomic structure and identification of expressed isoforms.J. Biol. Chem. 270 21016–21020.PubMedGoogle Scholar
  139. Zilliacus J., Wright A. P. H., Carlstedt-Duke J., and Gustafsson J-A. (1995) Structural determinants of DNA-binding specificity by steroid receptors.Mol. Endocrinol. 9, 389–400.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • Marian JoËls
    • 1
  • Erno Vreugdenhil
    • 2
  1. 1.Graduate School Neurosciences AmsterdamInstitute for NeurobiologyThe Netherlands
  2. 2.Division of Medical PharmacologyLeiden Amsterdam Center of Drug ResearchThe Netherlands

Personalised recommendations