Advertisement

Applied Biochemistry and Biotechnology

, Volume 26, Issue 1, pp 107–113 | Cite as

Patents and literature

Protein engineering and site-directed mutagenesis
  • Jonathan S. Dordick
  • Backman K. C. 
  • Balakrishnan R. 
  • Brent R. 
  • Ptashne M. S. 
  • Casson L. P. 
  • Goff S. A. 
  • Goldberg A. L. 
  • Cornelius P. A. 
  • Hochstrasser R. M. 
  • Kallenbach N. R. 
  • Rubin H. 
  • Todaro G. J. 
  • Boer H. A. De 
  • Delgoffe J. C. 
  • Lobmann M. 
  • ZyGraich N. 
  • Gehrke L. 
  • Kunkel T. 
  • Paau A. 
  • Platt S. G. 
  • Sequeira L. 
  • Palladino M. A. 
  • Roman H. G. 
  • Hultmark D. 
  • Rasmusan T. T. 
  • Steiner H. 
Article

Abstract

Protein engineering and site-directed mutagenesis is becoming immensely important in both fundamental studies and commercial applications involving proteins and enzymes in biocatalysis. Protein engineering has become a powerful tool to help biochemists and molecular enzymologists elucidate structure-function relationships in enzymic active sites, to understand the intricacies of protein folding and denaturation, and to alter the selectivity of enzymatic catalysis. Commercial applications of engineered enzymes are being developed to increase protein stability, widen or narrow substrate specificity, and to develop novel approaches for use of enzymes in organic synthesis, drug design, and clinical applications. In addition to protein engineering, novel expression systems have been designed to prepare large quantities of genetically engineered proteins. Recent US patents and scientific literature on protein engineering, site-directed mutagenesis, and protein expression systems related to protein engineering are surveyed. Patent abstracts are summarized individually and a list of literature references are given.

Keywords

Bovine Viral Diarrhea Virus Protein Engineering Bovine Viral Diarrhea Turnip Yellow Mosaic Virus Increase Protein Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Aaberg, A., Hahne, S., Karlsson, M., Larsson, A., Ormoe, M., Aahgren, A., and Sjoeberg, B.M. (1989), Evidence for two different classes of redox-active cysteines in ribonucleotide reductase ofEscherichia coli.J. Biol. Chem. 264, 12249–12252.Google Scholar
  2. 2.
    Atkins, W.M., and Sligar, S.G. (1989), Molecular recognition in cytochrome P-450: alteration of regioselective alkane hydroxylation via protein engineering.J. Am. Chem. Soc. 111, 2715–2717.CrossRefGoogle Scholar
  3. 3.
    Bartel, D., Hans, H., and Passow, H. (1989), Identification by site-directed mutagenesis of Lys-558 as the covalent attachment site of H2DIDS in the mouse erythroid band 3 protein.Biochim. Biophys. Acta. 985, 355–358.CrossRefGoogle Scholar
  4. 4.
    Bartel, D., Lepke, S., Layh-Schmitt, G., Legrum, B., and Passow, H. (1989), Anion transport in oocytes ofXenopus laevis induced by expression of mouse erythroid band 3 protein-encoding cRNA and of a cRNA derivative obtained by site-directed mutagenesis at the stilbene disulfonate binding site.EMBOJ. 8, 3601–3609.Google Scholar
  5. 5.
    Bayer, I., Fliess, A., Greipel, J., Urbanke, C., and Maass, G. (1989), Modulation of the affinity of the single-stranded DNA-binding protein ofEscherichia coli (E. coli SSB) to poly(dT) by site-directed mutagenesis.Eur. J. Biochem. 179, 399–404.CrossRefGoogle Scholar
  6. 6.
    Blachly-Dyson, E., Peng, S.Z., Colombini, M., and Forte, M. (1989), Probing the structure of the mitochondrial channel, VDAC., by site-directed mutagenesis: a progress report.J. Bioenerg. Biomembr. 21, 471–483.CrossRefGoogle Scholar
  7. 7.
    Blundell, T.L., Elliott, G., Gardner, S. P., Hubbard, T., Islam, S., Johnson, M., Mantafounis, D., Murray-Rust, P., and Overington, J. et al. (1989), Protein engineering and design.Philos. Trans. R. Soc. London, B.324, 447–460.CrossRefGoogle Scholar
  8. 8.
    Bradley, J.L., Piatak, M., Lane, J.A., and McGuire, P.M. (1989), Site-directed mutagenesis at amino terminus of recombinant ricin A chain.Int. J. Pept. Protein Res. 34, 2–5.CrossRefGoogle Scholar
  9. 9.
    Brunner, A.M., Marquardt, H., Malacko, A.R., Lioubin, M.N., and Purchio, A.F. (1989), Site-directed mutagenesis of cysteine residues in the pro region of the transforming growth factor ß-1 precursor. Expression and characterization of mutant proteins.J. Biol. Chem. 264, 13660–13664.Google Scholar
  10. 10.
    Glaser, P., Elmaoglou-Lazaridou, A., Krin, E., Ladant, D., Barzu, O., and Danchin, A. (1989), Identification of residues essential for catalysis and binding of caimodulin inBordetella pertussis adenylate cyclase by site-directed mutagenesis.EMBO J. 8, 967–972.Google Scholar
  11. 11.
    Haber, E., Quertermous, T., Matsueda, G.R., and Runge, M.S. (1989), Innovative approaches to plasminogen activator therapy.Science,243, 51–56.CrossRefGoogle Scholar
  12. 12.
    Haider, M. Z., and Ellar, D. J. (1989), Functional mapping of an entomocidal delta-endotoxin. Single amino acid changes produced by site-directed mutagenesis influence toxicity and specificity of the protein.J. Mol. Biol. 208, 183–194.CrossRefGoogle Scholar
  13. 13.
    Hatfull, G. F., Sanderson, M. R., Freemont, P. S., Raccuia, P. R., Grindley, N. D. F., and Steitz, T. A. (1989), Preparation of heavy-atom derivatives using site-directed mutagenesis. Introduction of cysteine residues into gamma delta resolvase.J. Mol. Biol. 208, 661–667.CrossRefGoogle Scholar
  14. 14.
    Hemming, A., Lundberg, L., and Olofsson, S. (1989), A strategy simplifying site-directed mutagenesis in the CD4-binding region of HIV gp 120.Arch. Virol. 107, 301–305.CrossRefGoogle Scholar
  15. 15.
    Holness, C. L., Lomonossoff, G. P., Evans, D., and Maule, A. J. (1989), Identification of the initiation codons for translation of cowpea mosaic virus middle component RNA using site-directed mutagenesis of an infectious cDNA clone.Virology 172, 311–320.CrossRefGoogle Scholar
  16. 16.
    Hu, W., VanderHeyden, N., and Ratner, L. (1989), Analysis of the function of viral protein X (VPX) of HIV-2.Virology 173, 624–630.CrossRefGoogle Scholar
  17. 17.
    Hughson, F.M., and Baldwin, R.L. (1989), Use of site-directed mutagenesis to destabilize native apomyoglobin relative to folding intermediates.Biochemistry 28, 4415–4422.CrossRefGoogle Scholar
  18. 18.
    Hwang, Y.W., McCabe, P.G., Innis, M.A., and Miller, D.L. (1989), Site-directed mutagenesis of the GDP binding domain of bacterial elongation factor Tu.Arch. Biochem. Biophys. 274, 394–403.CrossRefGoogle Scholar
  19. 19.
    Hwang, Y.W., Sanchez, A., and Miller, D.L. (1989), Mutagenesis of bacterial elongation factor Tu at lysine 136. A conserved amino acid in GTP regulatory proteins.J. Biol. Chem. 264, 8304–8309.Google Scholar
  20. 20.
    Imanaka, T., Kuroda, A., and Wang, H.Y. (1989), Protein engineering of penicillinase as affinity ligands for bioprocessing.J. Ferment. Bioeng. 67, 315–320.CrossRefGoogle Scholar
  21. 21.
    Jaworski, J.G., Post-Beittenmiller, M.A., and Ohlrogge, J.B. (1989), Site-directed mutagenesis of the spinach acyl carrier protein-I prosthetic group attachment site.Eur. J. Biochem. 184, 603–609.CrossRefGoogle Scholar
  22. 22.
    Jennings, P. A.; Bills, M. M.; Irving, D. O.; and Mattick, J. S. (1989), Fimbriae ofBacteroides nodosus: protein engineering of the structural subunit for the production of an exogenous peptide.Protein Eng. 2, 365–369.CrossRefGoogle Scholar
  23. 23.
    Karlsson, B.G., Aasa, R., Malmstroem, B.G., and Lundberg, L.G. (1989), Rack-induced bonding in blue copper proteins: spectroscopic properties and reduction potential of the azurin mutant Met-121FEBS Lett. 253, 99–102.CrossRefGoogle Scholar
  24. 24.
    Kato, M., Aiba, H., and Mizuno, T. (1989), Molecular analysis by deletion and site-directed mutagenesis of the cis-acting upstream sequence involved in activation of the ompF promoter inEscherichia coli.J. Biochem. (Tokyo),105, 341–347.Google Scholar
  25. 25.
    Kent, H.M., Ioannidis, I., Gormal, C. Smith, B.E. and Buck, M. (1989), Site-directed mutagenesis of theKlebsiella pneumonias nitrogenase. Effects of modifying conserved cysteine residues in the alpha and ß-subunits.Biochem. J. 264, 257–264.Google Scholar
  26. 26.
    Livingston, D.J., and McPherson, J.M. (1989), Protein engineering: new approaches to improved therapeutic proteins. Part II.Pharm. Technol. 13, 26, 28, 30, 32, 34.Google Scholar
  27. 27.
    Lynn, R.M., Bjornsti, M.A., Caron, P.R., and Wang, J.C. (1989), Peptide sequencing and site-directed mutagenesis identify tyrosine-727 as the active site tyrosine of Saccharomyces cerevisiae DNA topoisomerase I.Proc. Natl. Acad. Sci. U. S. A. 86, 3559–3563.CrossRefGoogle Scholar
  28. 28.
    Marc, D., Drugeon, G., Haenni, A.L., Girard, M., and Van der Werf, S. (1989), Role of myristoylation of poliovirus capsid protein VP4 as determined by site-directed mutagenesis of its N-terminal sequence.EMBO J. 8, 2661–2668.Google Scholar
  29. 29.
    Matouschek, A., Kellis, J.T. Jr., Serrano, L., and Fersht, A.R. (1989), Mapping the transition state and pathway of protein folding by protein engineering.Nature (London)340, 122–126.CrossRefGoogle Scholar
  30. 30.
    McPherson, J.M., and Livingston, D.J. (1989), Protein engineering: new approaches to improved therapeutic proteins. Part I.Pharm. Technol. 13, 22, 24, 26, 30, 32.Google Scholar
  31. 31.
    Mitchell, E.J., Karn, J., Brown, D.M., Newman, A., Jakes, R., Kendrick-Jones, J. (1989), Regulatory and essential light-chain-binding sites in myosin heavy chain subfragment-1 mapped by site-directed mutagenesis.J. Mol. Biol. 208, 199–205.CrossRefGoogle Scholar
  32. 32.
    Mitchinson, C., and Wells, J.A. (1989), Protein engineering of disulfide bonds in subtilisin BPN’.Biochemistry 28, 4807–4815.CrossRefGoogle Scholar
  33. 33.
    Mollison, K.W., Mandecki, W., Zuiderweg, E.R.P., Fayer, L., Fey, T.A., Krause, R.A., Conway, R.G., Miller, L., and Edalji, R.P., et al. (1989), Identification of receptor-binding residues in the inflammatory complement protein C5a by site-directed mutagenesis.Proc. Natl. Acad. Sci. U.S.A. 86, 292–296.CrossRefGoogle Scholar
  34. 34.
    Nielsen, P.F., Roepstorff, P., Clausen, I.G., Jensen, E.B., Jonassen, I., Svendsen, A., Balschmidt, P., and Hansen, F.B. (1989), Plasma desorption mass spectrometry, an analytical tool in protein engineering: characterization of modified insulins.Protein Eng. 2, 449–457.CrossRefGoogle Scholar
  35. 35.
    Nothwehr, S.F., and Gordon, J.I. (1989), Eukaryotic signal peptide structure/function relationships. Identification of conformational features which influence the site and efficiency of co-translational proteolytic processing by site-directed mutagenesis of human pre(DELTA-pro)apolipoprotein A-II.J. Biol. Chem. 264, 3979–3987.Google Scholar
  36. 36.
    Omura, F., Kohno, K., and Uchida, T. (1989), The histidine residue of codon 715 is essential for function of elongation factor 2.Eur. J. Biochem. 180, 1–8.CrossRefGoogle Scholar
  37. 37.
    Ozato, K., Kodier, D., Lieberman, R., Miyazaki, J., Appella, E., Mann, D.W., and Forman, J. (1989), Site directed mutagenesis identifies allo-antigenic epitopes of an H-2 antigen recognized by antibodies and by cytotoxic T-lymphocytes.NATO ASI Ser., Ser. A. 144(H-2 Antigens: Genes, Mol., Funct.), 177–184.Google Scholar
  38. 38.
    Pascher, T., Bergstroem, J., Malmstroem, B. G., Vaenngaard, T., and Lundberg, L. G. (1989), Modification of the electron-transfer sites ofPseudomonas aeruginosa azurin by site-directed mutagenesis.FEBS Lett. 258, 266–268.CrossRefGoogle Scholar
  39. 39.
    Pompon, D., and Nicolas, A. (1989), Protein engineering by cDNA recombination in yeasts: shuffling of mammalian cytochrome P-450 functions.Gene 83, 15–24.CrossRefGoogle Scholar
  40. 40.
    Presper, K.A., Won, C.Y., Liu, L., Meadow, N.D., and Roseman, S. (1989), Site-directed mutagenesis of the phosphocarrier protein, IIIGlc, a major signal-transducing protein inEscherichia coll.Proc. Natl. Acad. Sci. U. S. A. 86, 4052–4055.CrossRefGoogle Scholar
  41. 41.
    Proudfoot, A.E.I., Rose, K., and Wallace, C.J.A., (1989), Conformation-directed recombination of enzyme-activated peptide fragments: a simple and efficient means to protein engineering. Its use in the creation of cytochrome c analogs for structure-function studies.J. Biol. Chem. 164, 8764–8770.Google Scholar
  42. 42.
    Robson, B., (1989), Computer aided peptide and protein engineering.Prog. Clin. Biol. Res. 291(QSAR: Quant. Struct.-Act. Relat. Drug Des.), 227–231.Google Scholar
  43. 43.
    Roitsch, T., and Lehle, L. (1989), Structural requirements of protein N-glycosylation. Influence of acceptor peptides on cotranslational glycosylation of yeast invertase and site-directed mutagenesis around a sequon sequence.Eur. J. Biochem. 181, 525–529.CrossRefGoogle Scholar
  44. 44.
    Sibanda, B.L., Blundell, T.L., and Thornton, J.M. (1989), Conformation of ß-hairpins in protein structures. A systematic classification with applications to modeling by homology, electron density fitting and protein engineering.J. Mol. Biol. 206, 759–777.CrossRefGoogle Scholar
  45. 45.
    Stayton, P.S., Atkins, W.M., Springer, B.A., and Sligar, S.G. (1989), Site-directed mutagenesis of heme proteins.Met. Ions Biol. Syst. 25(Interrelat. Met. Ions, Enzymes, Gene Expression), 417–475.Google Scholar
  46. 46.
    Van de Kamp, M., Floris, R., Hali, F.C., and Canters, G.W. (1990), Site-directed mutagenesis reveals that the hydrophobic patch of azurin mediates electron transfer.J. Am. Chem. Soc. 112, 907–908.CrossRefGoogle Scholar
  47. 47.
    Van Poelje, P.D., and Snell, E.E. (1990), Cloning, sequencing, expression, and site-directed mutagenesis of the gene fromClostridium perfringens encoding pyruvoyl-dependent histidine decarboxylase.Biochemistry 29, 132–139.CrossRefGoogle Scholar
  48. 48.
    Waygood, E.B., Sharma, S., Bhanot, P., El-Kabbani, O.A.L., Delbaere, L.T.J., Georges, F., Wittekind, M.G., and Klevit, R.E. (1989), The structure of HPr and site-directed mutagenesis.FEMS Microbiol. Rev. 63, 43–52.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1990

Authors and Affiliations

  • Jonathan S. Dordick
    • 1
  • Backman K. C. 
  • Balakrishnan R. 
  • Brent R. 
  • Ptashne M. S. 
  • Casson L. P. 
  • Goff S. A. 
  • Goldberg A. L. 
  • Cornelius P. A. 
  • Hochstrasser R. M. 
  • Kallenbach N. R. 
  • Rubin H. 
  • Todaro G. J. 
  • Boer H. A. De 
  • Delgoffe J. C. 
  • Lobmann M. 
  • ZyGraich N. 
  • Gehrke L. 
  • Kunkel T. 
  • Paau A. 
  • Platt S. G. 
  • Sequeira L. 
  • Palladino M. A. 
  • Roman H. G. 
  • Hultmark D. 
  • Rasmusan T. T. 
  • Steiner H. 
  1. 1.Department of Chemical and Biochemical EngineeringUniversity of IowaIowa City

Personalised recommendations