Applied Biochemistry and Biotechnology

, Volume 9, Issue 1, pp 65–80 | Cite as

Underwater life support based on immobilized oxygen carriers

  • Celia Bonaventura
  • Joseph Bonaventura
  • Irving R. Hooper
  • Todd Marshall
Original Articles


One of the primary problems that hinders humans in their efforts to explore and develop the ocean realms is the lack of a ready supply of oxygen. Practical methods have not yet been devised for using the vast amount of oxygen dissolved in ocean waters for human life support in an undersea environment. Fish and other water-breathing animals have solved this problem by utilizing hemoglobin as a molecular oxygen pump. To achieve a similar oxygen extraction capability, we have explored various methods of oxygen extraction that are based on immobilized forms of hemoglobin. Improved methods for immobilizing hemoglobin or other oxygen carrying molecules and a method for extracting the available dissolved oxygen from natural waters and other fluids are described. The techniques that have been developed allow for immobilization of oxygen carriers at high concentration in a state where they are capable of reversible oxygen binding, and also allow for regeneration of the carrier in the event of oxidation of the oxygen-binding site.

Index Entries

Underwater life support, with immobilized O2 carriers immo-bilized oxygen carriers, for underwater life support oxygen carriers, immobilized carriers, immobilized oxygen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, S. L., and Urey, H. C. (1959),Science 130, 245.CrossRefGoogle Scholar
  2. 2.
    Degens, E. T., and Matheja, J. (1971), in Kimball, A. P., and Oro, J., eds.,Prebiotic and Biochemical Evolution, North-Holland Publishing Co., Amsterdam-London, p. 39.Google Scholar
  3. 3.
    Crick, F. H. C. (1981),Life Itself: Its Origins and Nature, S&S Publishing Co., Central Point, Oregon.Google Scholar
  4. 4.
    Oparin, A. I. (1959),The Origin of Life on the Earth, Macmillan, New York, 691 pp.Google Scholar
  5. 5.
    Brown, H. (1947), in Kuiper, G. P.,The Atmosphere of the Earth and Planets, Macmillan, New York, 376 pp.Google Scholar
  6. 6.
    Bonaventura, J., Bonaventura, C., and Sullivan, B. (1975),J. Exp. Zool. 194, 155.CrossRefGoogle Scholar
  7. 7.
    Lapennas, G., and Bonaventura, J. (1981), inMethods in Enzymology, Vol. 76, Academic Press, New York, pp. 449–470.Google Scholar
  8. 8.
    Lapennas, G., and Bonaventura, J. (1983),Anal. Biochem., submitted.Google Scholar
  9. 9.
    Bunn, H. F. (1971),Science 172, 1049.CrossRefGoogle Scholar
  10. 10.
    Currell, D. L., Law, B., Stevens, M., Murata, P., Ioppolo, C., and Martini, F. (1981),Biochem. Biophys. Res. Comm. 102, 348.CrossRefGoogle Scholar
  11. 11.
    Benesch, R., Benesch, R. E., Kwong, S., Acharya, A. S., and Manning, J. M. (1982),J. Biol. Chem. 257, 1320.Google Scholar
  12. 12.
    Bonaventura, C., and Bonaventura, J. (1980),Amer. Zool. 20, 131.Google Scholar
  13. 13.
    Hoffman, B. M., and Petering, D. H. (1970),Proc. Natl. Acad. Sci. USA 67, 637.CrossRefGoogle Scholar
  14. 14.
    Change, C. K., and Traylor, T. G. (1973),J. Am. Chem. Soc. 95, 5810.CrossRefGoogle Scholar
  15. 15.
    Bonaventura, J., and Bonaventura, C. (1982), US Patent Number 4, 343, 715.Google Scholar

Copyright information

© Humana Press Inc 1984

Authors and Affiliations

  • Celia Bonaventura
    • 1
  • Joseph Bonaventura
    • 1
  • Irving R. Hooper
    • 1
  • Todd Marshall
    • 1
  1. 1.Marine Biomedical CenterDuke University Marine LaboratoryBeaufortUSA

Personalised recommendations