Advertisement

Applied Biochemistry and Biotechnology

, Volume 16, Issue 1, pp 129–143 | Cite as

An investigation of heparinase immobilization

  • Howard Bernstein
  • Victor C. Yang
  • Robert Langer
Original Article

Abstract

A systematic investigation of the parameters that affect the efficiency of immobilizing heparinase onto cyanogen bromide activated crosslinked 8% agarose beads was conducted. Two experimental measures, the “fraction bound” and the “fraction retained,” were used to monitor the coupling efficiency. The fraction bound is the portion of the total initial enzyme that is bound to the agarose gel. The fraction retained is the fraction of bound enzyme that is active. The product of the two measures indicates the coupling efficiency. The activity of the immobilized heparinase was measured under conditions free of both internal and external mass transfer limitations, and thus, the fraction retained represents the true immobilized enzyme activity.

Increasing the degree of activation of the beads results in an increase in the fraction bound, the fraction retained, and consequently, the coupling efficiency. As the ratio of enzyme solution to gel volume increases from 1.5 to 2.2, the fraction bound remains constant but the fraction retained decreases (heparinase concentration; 0.15 mg/mL and degree of activation; 9.5 μmol of cyanate esters/g of gel). At volume ratios greater than 2.2, both the fraction bound and the fraction retained decline continuously. Changing the heparinase concentration in the coupling solution changes the coupling efficiency in a manner similar to that of the volume ratio change.

When heparin is added during the coupling process, the fraction bound declines as the heparin concentration increases, whereas the fraction retained increases up to a heparin concentration of 12 mg/mL and decreases thereafter. When arginine, lysine, and glycine are used to block the unreacted cyanate ester groups after the coupling process, the immobilized heparinase shows different pH optima of 6.5, 6.9, and 7.2, respectively. Based upon these findings, a protocol to optimize heparinase immobilization is developed.

Index entries

Heparinase immobilization fraction bound fraction retained coupling efficiency cyanogen bromide activation crosslinked 8% agarose beads degree of activation blocking agents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Langer, R., Linhardt, R. J., Hoffberg, S., Larsen, A. K., Cooney, C. L., Tapper, D., and Klein, M. (1982),Science 217, 261.CrossRefGoogle Scholar
  2. 2.
    Bernstein, H., Yang, V. C., Lund, D., Randawa, M., Harmon, W., and Langer, R. (1987),Kidney Int. 32, 452.CrossRefGoogle Scholar
  3. 3.
    Bernstein, H., Yang, V. C., and Langer, R. (1987),Biotechnol. Bioeng. 30, 196.CrossRefGoogle Scholar
  4. 4.
    Bernstein, H., Yang, V. C., and Langer, R. (1987),Biotechnol. Bioeng. 30, 239.CrossRefGoogle Scholar
  5. 5.
    Linhardt, R.J., Cooney, C. L., Tapper, D., Zannetos, C. A., Larsen, A. K., and Langer, R. (1984),Appl. Biochem. Biotechnol. 9, 41.CrossRefGoogle Scholar
  6. 6.
    Bradford, M. (1976),Anal. Biochem. 72, 248.CrossRefGoogle Scholar
  7. 7.
    Linker, A. and Hovingh, P. (1972),Methods Enzymol. 28, 902.CrossRefGoogle Scholar
  8. 8.
    Bernstein, H., Yang, V. C., Cooney, C. L., and Langer, R.Methods Enzymol. in press.Google Scholar
  9. 9.
    Wilchek, M. and Kohn, J. (1985),Anal. Biochem. 115, 375.Google Scholar
  10. 10.
    Galliher, P. M., Conway, L., Linhardt, R. J., Langer, R., and Cooney, C. L. (1982),Eur. J. Appl. Microb. 15, 252.CrossRefGoogle Scholar
  11. 11.
    Yang, V. C, Linhardt, R. J., Bernstein, H., Cooney, C. L., and Langer, R. (1985),J. Biol. Chem. 260, 1849.Google Scholar
  12. 12.
    Yang, V. C., Bernstein, H., Cooney, C. L., and Langer, R.Appl. Biochem Biotechnol. in press.Google Scholar
  13. 13.
    March, S., Parikh, I., and Cuatrescass, P. (1974),Anal. Biochem. 60, 149.CrossRefGoogle Scholar
  14. 14.
    Rosenberg, R. (1977),Semin. Hematol. 14, 427.Google Scholar
  15. 15.
    Goldstein, L. (1980),Methods Enzymol. 64, 398.Google Scholar
  16. 16.
    Enzyme Engineering 8 (1987), vol. 501, Laskin, A. I., Mosbach, K., Thomas, D., and Wingard, L. B., eds., Annals of the New York Academy of Science, New York.Google Scholar

Copyright information

© Humana Press Inc. 1987

Authors and Affiliations

  • Howard Bernstein
    • 1
  • Victor C. Yang
    • 2
  • Robert Langer
    • 1
    • 3
  1. 1.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridge
  2. 2.College of PharmacyThe University of MichiganAnn Arbor
  3. 3.Department of SurgeryChildren’s Hospital Medical CenterBoston

Personalised recommendations