Cell Biophysics

, Volume 14, Issue 2, pp 139–173 | Cite as

A dynamical model for receptor-mediated cell adhesion to surfaces in viscous shear flow

  • Daniel A. Hammer
  • Douglas A. Lauffenburger
Original Articles


We present a dynamical model for receptor-mediated cell adhesion to surfaces in viscous shear flow when the surfaces are coated with ligand molecules complementary to receptors in the cell membrane. This model considers the contact area between the cell and the surface to be a small, homogeneous region that mediates the initial attachment of the cell to the surface. Using a phase plane analysis for a system of nonlinear ordinary differential equations that govern the changes in free receptor density and bond density within the contact area with time, we can predict the conditions for which adhesion between the cell and the surface will take place. Whether adhesion occurs depends on values of dimensionless quantities that characterize the interaction of the cell and its receptors with the surface and its ligand, such as the bond formation rate, the receptor-ligand affinity, the fluid mechanical force, the receptor mobility, and the contact area. A key result is that there are two regimes in which different chemical and physical forces dominate: a rate-controlled high affinity regime and an affinity-controlled low affinity regime. Many experimental observations, including the effects of temperature and receptor mobility on adhesiveness, can be explained by understanding which of these regimes is appropriate. We also provide simple approximate analytical solutions, relating adhesiveness to cell and surface properties as well as fluid forces, which allow convenient testing of model predictions by experiment.

Index Entries

Cell adhesion, receptor-mediated, dynamical model shear flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chin, Y.-H., Rasmussen, R., Cakiroglu, A. G., and Woodruff, J. J., (1984),J. Immunol. 133, 2961.PubMedGoogle Scholar
  2. 2.
    Butcher, E., Scollay, R., and Weissman I., (1980),Eur. J. Immunol. 10, 556.PubMedCrossRefGoogle Scholar
  3. 3.
    Nicolson, G. L. (1982),Biochimica et Biophysica Acta 695, 113.PubMedGoogle Scholar
  4. 4.
    Doroszewski, J. (1980), inCell Adhesion and Motility, A. S. G. Curtis and J. D. Pitts, eds., pp. 171–197 Cambridge University Press.Google Scholar
  5. 5.
    Forrester, J. V. and Lackie, J. M. (1984),J. Cell Sci. 70, 93.PubMedGoogle Scholar
  6. 6.
    Wilkinson, P. C., Lackie, J. M., Forrester, J. V., and Dunn, G. A. (1984),J. Cell Biol. 99, 1761.PubMedCrossRefGoogle Scholar
  7. 7.
    Hertz, C. M., Graves, D. J., Lauffenburger, D. A. and Serota, F. T. (1985),Biotech. Bioeng. XXVII, 603.CrossRefGoogle Scholar
  8. 8.
    Wigzell, H. and Andersson, B. (1969),J. Exp. Med. 129, 23.PubMedCrossRefGoogle Scholar
  9. 9.
    Bell, G. I. (1981),Cell Biophys. 3, 289.PubMedGoogle Scholar
  10. 10.
    Bell, G. I., (1978),Science 200, 618.PubMedCrossRefGoogle Scholar
  11. 11.
    Goren, S. L. and O'Neill, M. E., (1971),Chem. Eng. Sci. 26, 325–338.CrossRefGoogle Scholar
  12. 12.
    Zhurkov, S. V., (1965),Int. J. Fract. Mech. 1, 311.Google Scholar
  13. 13a.
    Goldman, A. J., Cox, R. G., and Brenner, H. (1967),Chem. Eng. Sci. 22, 637.CrossRefGoogle Scholar
  14. 13b.
    Goldman, A. J., Cox, R. G., and Brenner, H. (1967),Chem. Eng. Sci. 22, 653.CrossRefGoogle Scholar
  15. 14.
    Schmid-Schönbein, G. W., Fung, Y.-C., and Zweifach, B. W. (1975),Circulation Res. 36, 173.Google Scholar
  16. 15.
    Bongrand, P. and Bell, G. I. (1984), inCell Surface Dynamics: Concepts and Models, A. S. Perelson, C. DeLisi, and F. W. Wiegel, eds., pp. 459–494, Dekker.Google Scholar
  17. 16.
    Axelrod, D., Wright, A., Webb, W., and Horowitz, A. (1978),Biochemistry 17, 3604.PubMedCrossRefGoogle Scholar
  18. 17.
    Jacobson, K., O'Dell, D., August, J. T. (1984)J. Cell Biol. 99, 1624.PubMedCrossRefGoogle Scholar
  19. 18.
    Perlmutter, D. D. (1972),Stability of Chemical Reactors, Prentice-Hall, pp. 71–126.Google Scholar
  20. 19.
    Spielman, L. A. and FitzPatrick, J. A. (1972),J. Colloid Int. Sci. 42, 607–623.CrossRefGoogle Scholar
  21. 20.
    Spielman, L. A. and Cukor, P. M. (1973),Colloid Int. Sci. 43, 51–65.CrossRefGoogle Scholar
  22. 21.
    Pecht, I. and Lancet, D., (1977),Mol. Biol. Biochem. Biophys. 24, 306.PubMedGoogle Scholar
  23. 22.
    Hertz, C. (1982), MS Thesis, University of Pennsylvania.Google Scholar
  24. 23.
    Juckett, D. A. and Hultquist, D. E. (1983)Proc. Soc. Exp. Biol. Med. 172, 79.PubMedGoogle Scholar
  25. 24.
    Kimura, A., Wigzell, H., Holmquist, G., Ersson, B., and Carlsson, P. (1979),J. Exp. Med. 149, 473.PubMedCrossRefGoogle Scholar
  26. 25.
    Baran, M. V., Allen, D. M., Russell, S. R., Scheetz, II M. E., and Monthony, J. F. (1982),J. Immunol. Meth. 53, 321.CrossRefGoogle Scholar
  27. 26.
    Sharma, S. K. and Mahendroo, P. P. (1980),J. Chromatog. 184, 471.CrossRefGoogle Scholar
  28. 27.
    Dimitrov, D. S. and Ivanov, I. B., (1978),J. Colloid Interface Sci. 64, 97.CrossRefGoogle Scholar
  29. 28.
    Dimitrov, D. S., (1983),Prog. Surf Sci. 14, 295.CrossRefGoogle Scholar
  30. 29.
    Dimitrov, D. S., Stoicheva, N., and Stefanova, D. (1984),J. Colloid Interface Sci. 98, 269.CrossRefGoogle Scholar
  31. 30A.
    Evans, E. A. (1985),Biophys. J. 48, 175.PubMedGoogle Scholar
  32. 30B.
    Evans, E. A. (1985),Biophys. J. 48, 185.PubMedGoogle Scholar
  33. 31.
    Pruzansky, J. J. and Patterson, R., (1986),Immunology 58, 257.PubMedGoogle Scholar
  34. 32.
    Zigmond, S. H., Sullivan, S. J., and Lauffenburger, D. A. (1982),J. Cell Biol. 92, 34.PubMedCrossRefGoogle Scholar
  35. 33.
    Klausner, R. D., Ashwell, G., van Rensoude, J., Harford, J. B., and Bridges, K. R. (1983),PNAS USA 80, 2263.PubMedCrossRefGoogle Scholar
  36. 34.
    Mellman, I. and Plutner, H. (1984),J. Cell Biol. 98, 1170.PubMedCrossRefGoogle Scholar
  37. 35.
    Dunn, W. A. and Hubbard, A. L. (1984),J. Cell Biol. 98, 2148.PubMedCrossRefGoogle Scholar
  38. 36.
    Rutishauser, U. and Sachs, L. (1975),J. Cell Biol. 66, 76.PubMedCrossRefGoogle Scholar
  39. 37.
    Mege, J. L., Capo, C., Benoliel, A. M., and Bongrand, P. (1986),Cell Biophys. 8, 141.PubMedGoogle Scholar
  40. 38.
    Evans, E. A. and Skalak, R. (1981),Mechanics and Thermodynamics of Biomembranes, CRC Press.Google Scholar
  41. 39.
    Evans, E. A., (1983),Biophys. J. 43, 27.PubMedGoogle Scholar
  42. 40.
    Fischer, T. M., Haest, C. W. M., Stohr-Liesen, M., Schmid-Schonbein, H., and Skalak, R. (1981),Biophys. J. 34, 409.PubMedGoogle Scholar
  43. 41.
    Zarda, P. R., Chien, S., and Skalak, R., (1977),J. Biomechanics 10, 211.CrossRefGoogle Scholar
  44. 42.
    Schmid-Schonbein, G. W., Sung, K. P., Torzeren, H., Skalak, R., and Chien, S., (1981),Biophys. J. 36, 243.PubMedCrossRefGoogle Scholar
  45. 43.
    Skalak, R., Schmid-Schonbein, G. W., and Chien, S. (1982), inWhite Blood Cells: Morphology and Rheology as Related to Function. Bagge, U., Born, G. V. R., and Gaehtgens, P., eds., p. 1.Google Scholar
  46. 44.
    Bell, G. I., Dembo, M., and Bongrand, P. (1984),Biophys. J. 45, 1051.PubMedCrossRefGoogle Scholar
  47. 45.
    Capo, C., Garrouste, F., Benoliel, A.-M., Bongrand, P., Ryter, A., and Bell, G. I. (1982),J. Cell Sci. 56, 21.PubMedGoogle Scholar
  48. 46.
    Atherton, A. and Born, G. V. R. (1972),J. Physiol. 222, 447.PubMedGoogle Scholar
  49. 47.
    Cooney, D. O. (1976),Biomedical Engineering Principles: An Introduction to Fluid, Heat, and Mass Transport Processes, vol. 2, Dekker, New York.Google Scholar
  50. 48.
    Goldsmith, H. L. and Spain, S. (1984),Microvascular Res. 27, 204.CrossRefGoogle Scholar
  51. 49.
    Hammer, D. A. (1987), Ph.D. Thesis University of Pennsylvania.Google Scholar
  52. 50.
    Marra, J. (1986),J. Colloid Int. Sci. 190 (1), 11–20.CrossRefGoogle Scholar
  53. 51.
    Israelachvili, J. N. (1985),Intermolecular and Surface Forces. With Applications to Colloidal and Biological Systems, Academic, pp. 144–147.Google Scholar
  54. 52.
    Ohshima, H., Makino, K., and Kondo, T. (1987),J. Colloid Int. Sci. 116 (1), 196–199.CrossRefGoogle Scholar
  55. 53.
    Bongrand, P., Capo, C., and Depieds, R. (1982),Prog. Surf. Sci. 12, 217.CrossRefGoogle Scholar
  56. 54.
    Weiss, L. and Dimitrov, D. S. (1984),Cell Biophysics 6, 9PubMedGoogle Scholar
  57. 55.
    Hubbe, M. A. (1981),Prog. Surf. Sci. 11, 65.CrossRefGoogle Scholar
  58. 56.
    Dembo, M., Torney, D. C., Saxman, K., and Hammer, D., (1988),Proc. R. Soc. Lond. B. 234, 55–83.PubMedGoogle Scholar
  59. 57.
    Hammer, D. A. and Lauffenburger, D. A., (1987),Biophys. J. 52, 475–487.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1989

Authors and Affiliations

  • Daniel A. Hammer
    • 1
  • Douglas A. Lauffenburger
    • 2
  1. 1.School of Chemical EngineeringCornell UniversityIthaca
  2. 2.Department of Chemical EngineeringUniversity of PennsylvaniaPhiladelphia

Personalised recommendations