Biological Trace Element Research

, Volume 16, Issue 2, pp 137–150 | Cite as

Effect of excess dietary histidine on rate of turnover of65Zn in brain of rat

  • Jan Wensink
  • Cornelis J. A. Van den Hamer


The effect of the chronic administration of histidine on the brain zinc level was examined in growing, male Wistar rats. Using a purified diet, the minimum zinc requirement for normal growth and normal plasma and tissue zinc levels was found to be around 10 ppm. Given this zinc content; the diet was supplemented with 5% and 8% histidine, respectively, or with 10% glycine (as control). Brain zinc was analyzed by measuring the rate of turnover of65Zn from 2–4 weeks after a single injection of the tracer. Feeding the diet supplemented with 5% histidine caused a small decrease in the plasma zinc concentration and a slight increase in the rate of turnover of65Zn in the cerebrum and the cerebellum as compared to the control group. The animals fed the diet supplemented with 8% histidine became severely zinc deficient (as evidenced by a 50% reduction in the plasma zinc content), however, the rate of turnover of65Zn in all brain regions examined was significantly decreased as compared to the control group. The results indicate that histidine has no specific complexing action on the brain zinc.

Index Entries

65Zn, rate of turnover in rat brain histidine, chronic administration and brain zinc brain, rate of turnover of65Zn 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. H. Sandstead,Nutr. Rev. 43, 129 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    E. S. Halas, M. J. Eberhardt, M. A. Diers, and H. H. Sandstead,Physiol. Behav. 30, 371 (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    D. F. Caldwell, D. Oberleas, J. J. Clancy, and A. S. Prasad,Proc. Soc. Exp. Biol. Med. 133, 1417 (1970).PubMedGoogle Scholar
  4. 4.
    G. W. Hesse, K. A. F. Hesse, and F. A. Catalanotto,Physiol. Behav. 22, 211 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    E. F. Gordon, J. T. Bond, R. C. Gordon, and M. R. Denny,Physiol. Behav. 28, 893 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    J. R. Prohaska, R. W. Luecke, and R. Jasinski,J. Nutr. 104, 1525 (1974).PubMedGoogle Scholar
  7. 7.
    I. E. Dreosti, S. J. Manuel, R. A. Buckley, F. J. Fraser, and I. R. Record,Life. Sci. 28, 2133 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    J. C. Wallwork, D. B. Milne, R. L. Sims, and H. H. Sandstead,J. Nutr. 113, 1895 (1983).PubMedGoogle Scholar
  9. 9.
    E. J. Kasarskis, inThe Neurobiology of Zinc, C. J. Frederickson, G. A. Howell, and E. J. Kasarskis, eds., Liss, New York, 1984, Part A, pp. 27–37.Google Scholar
  10. 10.
    J. Wensink, C. H. Paays, and C. J. A. Van den Hamer,Biol. Trace Elem. Res.,14, 127 (1987).Google Scholar
  11. 11.
    G. Danscher, and F. M. S. Haug,Histochemie 28, 211 (1971).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Danscher, F. M. S. Haug, and K. Fredens,Exp. Brain Res. 16, 521 (1973).PubMedCrossRefGoogle Scholar
  13. 13.
    K. Fredens, and G. Danscher,Histochemie 37, 321 (1973).PubMedCrossRefGoogle Scholar
  14. 14.
    I. L. Crawford and J. D. Connor,J. Orthomol. Psychiat. 4, 39 (1975).Google Scholar
  15. 15.
    R. I. Henkin, B. M. Patten, P. K. Re, and D. A. Bronzert,Arch. Neurol. 32, 745 (1975).PubMedGoogle Scholar
  16. 16.
    R. I. Henkin, inProtein-Metal Interactions, M. Friedman, ed., Plenum Press, New York and London, 1973, pp. 299–328.Google Scholar
  17. 17.
    R. M. Freeman, and P. R. Taylor,Am. J. Clin. Nutr. 30, 523 (1977).PubMedGoogle Scholar
  18. 18.
    A. I. Rasmussen,Fed., Proc. 41, 781 (1982).Google Scholar
  19. 19.
    J. K. Solomon, and R. L. Geison,J. Nutr. 108, 936 (1978).PubMedGoogle Scholar
  20. 20.
    P. W. Harvey, H. A. Hunsaker, and K. G. D. Allen,N. Nutr. 111, 639 (1981).Google Scholar
  21. 21.
    E. J. Kasarskis,Exp. Neurol. 85, 114 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    S. M. Sato, J. M. Frazier, and A. M. Goldberg,J. Neurosci. 4, 1671 (1984).PubMedGoogle Scholar
  23. 23.
    A. A. Yunice, R. W. King, S. Kraikitpanitch, C. C. Haygood, and R. D. Lindeman,Am. J. Physiol.,235, F40 (1978).PubMedGoogle Scholar
  24. 24.
    A. A. Van Barneveld, and C. J. A. Van den Hamer,Nutr. Rep. Int. 29, 173 (1984).Google Scholar
  25. 25.
    J. A. Ambrose, A. Crimm, J. Burton, K. Paullin, and C. Ross,Clin. Chem. 15, 361 (1969).PubMedGoogle Scholar
  26. 26.
    A. A. Van Barneveld, and C. J. A. Van den Hamer,Biol. Trace Elem. Res. 6, 489 (1984).CrossRefGoogle Scholar
  27. 27.
    A. A. Van barneveld, and C. J. A. Van den Hamer,Toxicol. Appl. Pharmacol. 79, 1 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    R. M. Forbes, and M. Yohe,J. Nutr. 70, 53 (1960).PubMedGoogle Scholar
  29. 29.
    E. S. Halas, J. C. Wallwork, and H. H. Sandstead,J. Nutr. 112, 542 (1982).PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • Jan Wensink
    • 1
  • Cornelis J. A. Van den Hamer
    • 1
  1. 1.Department of RadiochemistryInteruniversity Reactor InstituteDelftThe Netherlands

Personalised recommendations