In Vitro - Plant

, Volume 18, Issue 2, pp 108–116 | Cite as

Stimulation of DNA synthesis in primary cultures of adult rat hepatocytes by rat platelet-associated substance(s)

  • Alastair J. Strain
  • Joan A. McGowan
  • Nancy L. R. Bucher


Experiments in whole animals have shown that normally quiescent adult rat hepatocytes are induced to proliferate by blood borne substances, which we are now probing in primary monolayer cultures. Under our conditions, freshly isolated adult hepatocytes do not proliferate actively in a defined medium, but are stimulated to synthesize DNA — an essential first step — by either serum or an EGF-hormone combination.

Stimulation of [3H]thymidine incorporation into hepatocyte DNA by addition of dialyzed mouse, human, horse, or bovine (fetal, newborn, or calf) serum, whose activities are all similar, is regularly surpassed by an EGF-insulin mixture without serum. This, in turn, is exceeded by dialyzed normal rat serum, which is several times more potent than the other sera tested.

Removal of blood platelets reduces the activity of normal rat serum by over 50%. Heat inactivation (56° C) causes a similar loss, but heat treatment of platelet-poor serum fails to cause further reduction. The activity of mouse and human serum is not reduced by platelet removal.

Serum from partially hepatectomized rats is not significantly more stimulatory than normal rat serum, and its activity is depressed in the same way by platelet deprivation and heat inactivation. Lack of enhancement by partial hepatectomy is not consonant with whole animal studies and requires further investigation.

The heat-labile portion of the DNA synthesis-stimulating activity of rat serum appears to derive from platelets. This activity differs from the well-characterized heat-stable human PDGF. Its relation to other reported platelet-associated growth factors is still undetermined.

Key words

hepatocytes DNA synthesis serum platelets growth factors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bucher, N. L. R.; McGowan, J. A. Regeneration:regulatory mechanisms. Wright, E.; Alberti, K. G. M. M.; Karran, S.; Millward-Sadler, G. eds. Liver and biliary disease. London: W. B. Saunders; 1979: 210–227.Google Scholar
  2. 2.
    Richman, R. A.; Claus, T. H.; Pilkis, S. J.; Friedman, D. L. Hormonal stimulation of DNA synthesis in primary cultures of adult rat hepatocytes. Proc. Natl. Acad. Sci. USA 73: 3589–3493; 1976.PubMedCrossRefGoogle Scholar
  3. 3.
    Armato, U.; Draghi, E.; Andreis, P. G. Effects of purine cyclic nucleotides in the growth of neonatal rat hepatocytes in primary tissue culture. Exp. Cell Res. 105: 337–347; 1977.PubMedCrossRefGoogle Scholar
  4. 4.
    Leffert, H. L.; Moran, T.; Boorstein, R.; Koch, K. S. Procarcinogen activation and hormonal control of cell proliferation in differentiated primary adult rat liver cell cultures. Nature 267: 58–61; 1977.PubMedCrossRefGoogle Scholar
  5. 5.
    Leffert, H. L.; Moran, T.; Sell, S.; Skelly, H.; Ibsen, K.; Mueller, M.; Arias, I. Growth state-dependent phenotype of adult hepatocytes in primary monolayer cultures. Proc. Natl. Acad. Sci. USA 75: 1834–1838; 1978.PubMedCrossRefGoogle Scholar
  6. 6.
    Koch, K. S.; Leffert, H. L. Growth control of differentiated adult rat hepatocytes in primary culture. Ann. N. Y. Acad. Sci. 349: 111–127; 1980.PubMedCrossRefGoogle Scholar
  7. 7.
    Laishes, B. A.; Williams, G. M. Conditions affecting primary cell cultures of functional adult rat hepatocytes. II. Dexamethasone enhanced longevity and maintenance of morphology. In Vitro 12: 821–832; 1976.PubMedGoogle Scholar
  8. 8.
    Savage, C. R.; Bonney, R. S. Extended expression of differentiated function in primary cultures of adult liver parenchymal cells maintained on nitrocellulose filters. I. Induction of phosphoenolpyruvate carboxykinase and tyrosine aminotransferase. Exp. Cell Res. 114: 307–315; 1978.PubMedCrossRefGoogle Scholar
  9. 9.
    Sirica, A. E.; Richards, W.; Tsukada, Y.; Sattler, C. A.; Pitot, H. C. Fetal phenotypic expression by adult rat hepatocytes on collagen gel/nylon meshes. Proc. Natl. Acad. Sci. USA 76: 283–287; 1979.PubMedCrossRefGoogle Scholar
  10. 10.
    McGowan, J. A.; Strain, A. J.; Bucher, N. L. R. DNA synthesis in primary cultures of adult rat hepatocytes in a defined medium: Effects of epidermal growth factor, insulin, glucagon and cyclic-AMP. J. Cell Physiol. 108: 353–363; 1981.PubMedCrossRefGoogle Scholar
  11. 11.
    Holley, R. W. Control of growth in mammalian cells in culture. Nature 258: 487–490; 1975.PubMedCrossRefGoogle Scholar
  12. 12.
    Hayashi, I.; Sato, G. H. Replacement of serum by hormones permits growth of cells in a defined medium. Nature 259: 132–134; 1976.PubMedCrossRefGoogle Scholar
  13. 13.
    Strain, A. J.; McGowan, J. A.; Bucher, N. L. R. Stimulation of DNA synthesis in primary adult rat hepatocytes by sera from normal and partially hepatectomized rats (abstr.). In Vitro 16: 225; 1980.Google Scholar
  14. 14.
    Strain, A. J.; McGowan, J. A.; Bucher, N. L. R. Role of serum and platelets in stimulation of DNA synthesis in primary cultures of adult rat hepatocytes (abstr.). Gastroenterology 79: 1056; 1980.Google Scholar
  15. 15.
    Waymouth, C. Preparation of medium MAB 87/3 for primary cultures of epithelial cells. TCA Manual 3: 521–525; 1976.CrossRefGoogle Scholar
  16. 16.
    Leffert, H. L.; Paul, D. Studies in primary cultures of differentiated fetal liver cells. J. Cell Biol. 52: 559–568; 1972.PubMedCrossRefGoogle Scholar
  17. 17.
    Acosta, D.; Anuforo, D.; Smith, R. Primary monolayer cultures of postnatal rat liver cells with extended differentiated functions. In Vitro 14: 428–436; 1978.PubMedCrossRefGoogle Scholar
  18. 18.
    Seglen, P. O. Preparation of isolated rat liver cells. Prescott, D. M. ed. Methods in cell biology. Vol. 13. New York: Academic Press; 1976: 29–83.Google Scholar
  19. 19.
    Munro, H. N.; Fleck, A. The determination of nucleic acids. Glick, D. ed. Methods of biochemical analysis. Vol. 14. New York: John Wiley; 1966: 113–176.CrossRefGoogle Scholar
  20. 20.
    Prescott, D. M. Autoradiography with liquid emulsion. Prescott, D. M. ed. Methods in cell physiology. Vol. 1. New York: Academic Press; 1964: 365–370.Google Scholar
  21. 21.
    Burton, K. A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62: 315–322; 1956.PubMedGoogle Scholar
  22. 22.
    Ross, R.; Nist, C.; Kariya, B.; Rivest, M. J.; Raines, E.; Callis, J. Physiological quiescence in plasma-derived serum: influence of platelet-derived growth factor on cell growth in culture. J. Cell Physiol. 97: 497–508; 1978.PubMedCrossRefGoogle Scholar
  23. 23.
    Bucher, N. L. R.; Malt, R. A. Regeneration of liver and kidney. Boston: Little, Brown; 1971: 161–176.Google Scholar
  24. 24.
    Ross, R.; Glomset, J.; Kariya, B.; Harker, L. A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cellsin vitro. Proc. Natl. Acad. Sci. USA 71: 1207–1210; 1974.PubMedCrossRefGoogle Scholar
  25. 25.
    Ross, R.; Vogel, A. The platelet-derived growth factor. Cell 14: 203–210; 1978.PubMedCrossRefGoogle Scholar
  26. 26.
    Scher, C. D.; Shepard, R. C.; Antoniades, H. N.; Stiles, C. D. Platelet-derived growth factor and the regulation of the mammalian fibroblast cell cycle. Biochim. Biophys. Acta 560: 217–241; 1979.PubMedGoogle Scholar
  27. 27.
    Kohler, N.; Lipton, A. Platelets as a source of fibroblast growth-promoting activity. Exp. Cell Res. 87: 297–301; 1974.PubMedCrossRefGoogle Scholar
  28. 28.
    Westermark, B.; Wasteson, A. A platelet factor stimulating human normal glial cells. Exp. Cell Res. 98: 170–174; 1976.PubMedCrossRefGoogle Scholar
  29. 29.
    Eastment, C. T.; Sirbasku, D. A. Platelet-derived growth factor(s) for a hormone-responsive rat mammary tumor cell line. J. Cell Physiol. 97: 17–28; 1978.PubMedCrossRefGoogle Scholar
  30. 30.
    Hara, Y.; Steiner, M.; Baldini, M. G. Platelets as a source of growth-promoting factor(s) for tumor cells. Cancer Res. 40: 1212–1216; 1980.PubMedGoogle Scholar
  31. 31.
    Altman, P. L.; Dittmer, D. S. eds. Biology data book. 2nd ed. Vol. 3. Bethesda: Federation of American Societies for Experimental Biology; 1974: 1854.Google Scholar
  32. 32.
    Holley, R. W.; Kiernan, J. A. “Contact inhibition” of cell division in 3T3 cells. Proc. Natl. Acad. Sci. USA 60: 300–304; 1968.PubMedCrossRefGoogle Scholar
  33. 33.
    Rubin, H. Growth regulation in culture of chick embryo fibroblasts. Wolstenholme, G. E. W.; Knight, J. eds. Growth control in cell cultures (Ciba Foundation Symposium) London: Churchill Livingston; 1971: 127–145.Google Scholar
  34. 34.
    Leffert, H. L.; Weinstein, D. B. Growth control of differentiated fetal rat hepatocytes in primary monolayer culture. IX. Specific inhibition of DNA synthesis initiation by very low density lipoprotein and possible significance to the problem of liver regeneration. J. Cell Biol. 70: 20–32; 1976.PubMedCrossRefGoogle Scholar
  35. 35.
    Onda, H.; Yoshikawa, J. Studies on the regulatory mechanisms of cell division.α-1-Acid glycoprotein as a hepatic-specific mitosis inhibitory protein in regenerating rat liver. Gann 66: 227–235; 1974.Google Scholar
  36. 36.
    Sikas, G.; Cook, R. T. Isolation of a low molecular weight inhibitor of [3H]TdR incorporation into hepatic DNA. Exp. Cell Res. 102: 422–425; 1976.CrossRefGoogle Scholar
  37. 37.
    Zetter, B. R.; Antoniades, H. N. Stimulation of human vascular endothelial cell growth by a platelet-derived growth factor and thrombin. J. Supramol. Struct. 11: 361–370; 1979.PubMedCrossRefGoogle Scholar

Copyright information

© Tissue Culture Assoc. Inc. 1982

Authors and Affiliations

  • Alastair J. Strain
    • 1
  • Joan A. McGowan
    • 1
  • Nancy L. R. Bucher
    • 1
  1. 1.The Cell Biology Unit, Shriners Burns Institute and Surgical ServicesMassachusetts General Hospital and Department of Surgery, Harvard Medical SchoolBoston

Personalised recommendations