Journal d’Analyse Mathématique

, Volume 54, Issue 1, pp 229–236 | Cite as

Matzoh ball soup: A symmetry result for the heat equation

  • Giovanni Alessandrini


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A-G] G. Alessandrini and N. Garofalo,Symmetry for degenerate parabolic equations, Arch. Rat. Mech. Anal., to appear.Google Scholar
  2. [F] A. Friedman,Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, 1964.MATHGoogle Scholar
  3. [K] M. S. Klamkin,A physical characterization of a sphere (Problem 64-5*), SIAM Rev.6 (1964), 61.CrossRefGoogle Scholar
  4. [L-S-U] O. A. Ladyženskaya, V. A. Solonnikov and N. N. Ural'ceva,Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967; Engl. transl., American Mathematical Society, Providence, 1968.Google Scholar
  5. [P-W] M. Protter and H. F. Weinberger,Maximum Principles in Differential Equations, Prentice-Englewood Cliffs, 1967.Google Scholar
  6. [S] J. Serrin,A symmetry problem in potential theory, Arch. Rat. Mech. Anal.43 (1971), 304–318.MATHCrossRefMathSciNetGoogle Scholar
  7. [Z] L. Zalcman,Some inverse problems of potential theory, Contemp. Math.63 (1987), 337–350.MathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1990

Authors and Affiliations

  • Giovanni Alessandrini
    • 1
  1. 1.Dipartimento di MatematicaUniversità di AnconaAnconaItaly

Personalised recommendations