Advertisement

Resistance against oxidative stress in leaves of young beech trees grown in model ecosystems with different soil qualities, elevated CO2, and lachnid infestation

  • Andrea Polle
  • D. Peltzer
  • P. Schwanz
Article

Summary

The aim of the present study was to investigate whether the resistance of beech foliage(Fagus sylvatica) against oxidative stress was affected by soil quality, nitrogen or CO2 fertilisation, or lachnid infestation(Phyllaphis fagi). For this purpose young beech trees were grown for four years in reconstructed calcareous or acidic forest soils in open top chambers under ambient or elevated CO2 concentrations with two levels of nitrogen fertilisation. At harvest lachnid colonisation was observed, preferentially on leaves from trees in calcareous soil and on leaves from trees fertilised with the high nitrogen level. General leaf characteristics such as pigment concentrations, dry mass, and leaf mass ber area were not affected by the soil type, nitrogen fertilisation or CO2 regime. Leaves colonised with lachnids displayed slightly increased leaf mass per area. When the stress resistance was challenged by exposure to paraquat — a herbicide inducing oxidative stress — leaves from trees grown on calcareous soil maintained significantly longer membrane integrity and, thus, were better protected against stress than leaves from trees on acidic soil. Other experimental variables had negligible or no effects on the resistance against oxidative stress.

Keywords

aphid insect(Phyllaphis fagi) beech(Fagus sylvatica) oxidative stress nutrition 

Resistenz gegen oxidativen Stress in Blättern von jungen Buchen(Fagus sylvatica) aus Modellökosystemen mit unterschiedlichen Bodenqualitäten, erhöhtem CO2 und Befall mit der Buchenzierlaus

Zusammenfassung

Ziel der vorliegenden Arbeit war es zu untersuchen, ob die Resistenz von Buchenlaub(Fagus sylvatica) gegen oxidativen Streß durch die Bodenqualität, durch Stickstoff- oder CO2-Düngung oder durch Befall mit der Buchenzierlaus(Phyllaphis fagi) beeinflußt wird. Zu diesem Zweck wurden junge Buchen vier Jahre lang in rekonstruierten kalkhaltigen oder sauren Waldböden in Open Top Kammern bei ambienten oder erhöhten CO2-Konzentrationen angezogen. Die Bodenkompartimente waren parzelliert und wurden regelmäßig mit je zwei unterschiedlichen Stickstoffregimes gedüngt. Zum Zeitpunkt der Ernte wurde ein zusätzlicher Befall mit Läusen beobachtet, vorzugsweise auf Blättern von Bäumen, die auf dem kalkhaltigen Boden wuchsen oder die zusätzlich mit hohen N-Gaben gedüngt wurden. Allgemeine Blattcharakteristika wie Pigmentgehalte, relative Trockenmasse oder Blattgewicht pro Fläche hingen weder von der Bodenart noch von der Stickstoffdüngung oder dem CO2-Regime ab. Mit Läusen befallene Blätter zeigen etwas erhöhte Blattgewichte pro Flächeneinheit. Oxidativer Streß wurde in Blättern durch Paraquat — ein Herbizid, das im Licht zur Bildung von Sauerstoffradikalen führt — induziert. Unter diesen Bedingungen konnten Blätter von Buchen, die auf dem kalkhaltigen Boden wuchsen, deutlich länger ihre Membranintegrität erhalten und waren daher besser gegen oxidativen Streß geschützt als Blätter von Buchen, die auf sauren Böden wuchsen. Alle anderen experimentellen Variablen hatten nur unbedeutende Veränderungen der Streßtoleranz zur Folge.

Schlüsselwörter

Buchenzierlaus(Phyllaphis fagi) Buche(Fagus sylvatica) oxidativer Stress Ernährung 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 Literature

  1. Asman, W., Sutton, M., Schjorring, J., 1998: Ammonia: emission, atmospheric transport and deposition. New Phytol. 139, 27–48.CrossRefGoogle Scholar
  2. Boese, S., Wolfe, D., Melkonian, J., 1997. Elevated CO2 mitigates chilling-induced water stress and photosynthesis reduction during chilling. Plant Cell Environ. 20, 625–632.CrossRefGoogle Scholar
  3. Bucher-Wallin, I. K., Sonnleitner M. A., Egli, P., Günthard-Georg, Madeleine, Tarjan, D. Schulin, R., Bucher, J. B., 2000: Effects of elevated CO2, increased nitrogen deposition and soil on evaporation and water use efficiency of spruce-beech model ecosystems. Phyton, in the press.Google Scholar
  4. Dodge, A. D., 1971: The mode of action of bipyridylium herbicides, paraquat ad diquat. Endeavour 30, 130–135.CrossRefPubMedGoogle Scholar
  5. Egli, P., Körner, C., 1997: Growth responses to elevated CO2 and soil quality in beech-spruce model ecosystems. Acta Oecol. 18, 351–359.CrossRefGoogle Scholar
  6. Egli, P., Maurer, S., Günthardt-Goerg, Madeleine, Körner, C., 1998: Effects of elevated CO2 and soil quality on leaf gas exchange and above-ground growth in beech-spruce model ecosystems. New Phytol. 140, 185–196.CrossRefGoogle Scholar
  7. Ellenberg, H., 1996: Die Vegetations Mitteleuropas mit den Alpen. Ulmer Verlag, 5. Aufl., StuttgartGoogle Scholar
  8. Epron, D., Liozon, R., Mosseau, Marianne, 1996: Effects of elevated CO2 concentration on leaf characteristics and photosynthetic capacity of beech(Fagus sylvatica) during the growing season. Tree Physiol. 16, 425–432.CrossRefPubMedGoogle Scholar
  9. Forstreuter, M., 1998: What can we learn from microcosms? In European Forests and Global Change: The likely impacts of rising CO2 and temperature. Ed. P. Jarvis, Cambridge University Press Cambridge, pp. 274–292.Google Scholar
  10. Gora, V., König, J., Lunderstädt, J., 1994: Physiological defence reactions of young beech trees(Fagus sylvatica) to attack byPhyllaphis fagi. Forest Ecol. Manag. 70, 245–254.CrossRefGoogle Scholar
  11. Hsiao, T. C., Jackson, R. B., 1999: Interactive effects of water stress and elevated CO2 on growth, photosynthesis, and water use efficiency. In:Luo, Y., Mooney, H. A., (Eds.), Carbon Dioxide and Environmental Stress. Academic Press, San Diego, CA., pp. 3–31.CrossRefGoogle Scholar
  12. Lee, Helen, Overdieck, D., Jarvis, P., 1998: Biomass, growth and carbon allocation. In European Forests and Global Change: The likely impacts of rising CO2 and temperature. Ed. P. Jarvis, Cambridge University Press Cambridge, pp. 126–191.Google Scholar
  13. Lichtenthaler, H. K., Wellburn, A. R., 1983: Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Transac. 603, 591–592.CrossRefGoogle Scholar
  14. Linder, S., Murray, Maureen, 1998: Do elevated CO2 concentrations and nutrients interact? In European Forests and Global Change: The likely impacts of rising CO2 and temperature. Ed. P. Jarvis, Cambridge University Press Cambridge, pp. 214–235.Google Scholar
  15. Matyssek, R., Maurer, S., Günthardt-Goerg, Madeleine, Landoldt, W., Saurer, M., Polle, Andrea, 1997: Nutrition determines the “strategy” ofBetula pendula for coping with ozone stress. Phyton 37, 157–168.Google Scholar
  16. Mosseau, Marianne, Dufrêne, E., El Kohen, A., Epron, D., Godard, D., Liozon, R., Pontailer J. Y., Saugier B., 1996: Growth strategy and tree response to elevated CO2: a comparison of beech(Fagus sylvatica) and sweet chestnut(Castanea sativa Mill.) In Carbon dioxide and terrestrial ecosystems. Eds. G. Koch and H. Mooney. Academic Press, San Diego, pp. 71–86.CrossRefGoogle Scholar
  17. Norby, R., Wullschleger, D. S., Gunderson, Carla, Johnson, D., Ceulemans, R., 1999: Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environm. 22, 683–714.CrossRefGoogle Scholar
  18. Otto, H. J., 1992: Niedersächisches Programm zur langfristigen ökologischen Waldentwicklung in den Landesforsten. Niedersächsische Landesregierung (Editor). 2. Aufl., p. 49.Google Scholar
  19. Pearson, J., Stewart, G., 1993: The deposition of atmospheric ammonia and its effects on plants. New Phytol. 125, 283–305.CrossRefGoogle Scholar
  20. Polle, Andrea, 1997: Defense against photooxidative damage in plants. In Oxidative stress and the molecular biology of antixidant denfenses. Ed. J. Scandalios. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, pp. 623–666.Google Scholar
  21. Polle, Andrea, Pell, Eva, 1999: Role of carbon dioxide in modifying the plant response to ozone. In: Carbon Dioxide and Environmental Stress (Liu Y. and Mooney H.) Physiological ecology series, Academic Press, New York, 193–220.CrossRefGoogle Scholar
  22. Polle, Andrea, Eiblmeier, Monika, Sheppard, Lucy, Murray, Maureen, 1997: Responses of antioxidative enzymes to elevated CO2 in leaves of beech (Fagus sylvatica L.) seedlings grown under a range of nutrient regimes. Plant Cell Environm. 20, 1317–1321.CrossRefGoogle Scholar
  23. Schimel, D., Alves, D., Enting, I., Heiman, M., Joos, F., Raynaud, D., Wigley, T., 1996: Radiative forcing of climate change. In Climate Change 1995. The Science of Climate Change. Eds. J. T. Houghton, L. G. MeiraFilho, B. A. Callander, N. Harris, A. Kattenberg and K. Maskell, Cambridge University Press, Cambridge, UK, pp. 35–71.Google Scholar

Copyright information

© Blackwell Wissenschafts-Verlag 2001

Authors and Affiliations

  1. 1.Forstbotanisches InstitutGeorg August Universität GöttingenGöttingenGermany

Personalised recommendations