Journal d’Analyse Mathématique

, Volume 47, Issue 1, pp 1–36 | Cite as

Cuspidal geometry ofp-adic groups

  • David Kazhdan


Irreducible Representation Conjugacy Class Parabolic Subgroup Regular Element Congruence Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bernstein, rédigé par P. Deligne,Le “Centre” de Bernstein, in [4].Google Scholar
  2. 2.
    J. Bernstein and Z. Zelevinsky,Induced representations of reductive p-adic groups I, Ann. Sci. Ec. Norm. Sup., 4e série,10 (1977), 441–472.zbMATHMathSciNetGoogle Scholar
  3. 3.
    J. Bernstein, P. Deligne and D. Kazhdan,Trace Paley-Wiener theorem for reductive p-adic groups, J. Analyse Math.47 (1986), 180–192 (this issue).zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Bernstein, P. Deligne, D. Kazhdan and M.-F. Vigneras,Représentations des groups réductif sur un corps local, Hermann, Paris, 1984.Google Scholar
  5. 5.
    A. Borel and N. Wallach,Continuous cohomology, discrete subgroups and representations of reductive groups, Annals of Math. Studies, Princeton Univ. Press, 1980.Google Scholar
  6. 6.
    P. Deligne, D. Kazhdan and M.-F. Vigneras,Représentations des algèbres centrales simples p-adiques, in [4].Google Scholar
  7. 7.
    Harish-Chandra,Admissible invariant distributions on reductive p-adic groups, Queen's Papers in Pure and Applied Math.48 (1978), 281–346.MathSciNetGoogle Scholar
  8. 8.
    Harish-Chandra,The Plancherel formula for reductive p-adic groups, preprint.Google Scholar
  9. 9.
    Harish-Chandra (notes by G. van Dijk),Harmonic analysis on reductive p-adic groups, Springer Lecture Notes162, 1970.Google Scholar
  10. 10.
    A. J. Silberger,Introduction to harmonic analysis on reductive p-adic group, Princeton Math. Notes23, 1979.Google Scholar
  11. 11.
    J. Tate,The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math. J.27 (1966), 709–719.zbMATHMathSciNetGoogle Scholar
  12. 12.
    M. F. Vignéras,Caractérisation des intégrales orbital sur un group réductif p-adic, J. Fac. Sci. Univ. Tokyo28 (14) (1982), 945–961.Google Scholar
  13. 13.
    A. Weil,Sur certaines groupes d'opérateurs unitaires, Acta Math.111 (1964), 143–211.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1986

Authors and Affiliations

  • David Kazhdan
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations