Journal d’Analyse Mathématique

, Volume 80, Issue 1, pp 299–317 | Cite as

Some remarks on the definition of tangent cones in a Carnot-Carathéodory space

  • G. A. MargulisEmail author
  • G. D. Mostow


Vector Field Poisson Bracket Tangent Cone Unipotent Group Compact Neighborhood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. L. Chow,Systeme von linearen partiellen differential Gleichungen erstes Ordnung, Math. Ann.117 (1939), 98–105.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    R. Goodman,Nilpotent Lie Groups: Structure and Applications to Analysis, Lecture Notes in Math.562, Springer, Berlin, 1970.Google Scholar
  3. [3]
    M. Gromov,Structures métriques pour les variétés riemanniennes, CEDIC, Paris, 1981.zbMATHGoogle Scholar
  4. [4]
    L. Hörmander,Hypoelliptic second order differential equations, Acta Math.119 (1967), 147–171.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    G. Margulis and G. D. Mostow,The differential of a quasi-conformed mapping of a Carnot-Carathéodory space, Geom. Funct Anal.5 (1995), 402–433.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    G. Metivier,Fonction spectrale et valeurs propres d’une class d’operateurs non-elliptiques, Comm. Partial Differential Equations1 (1976), 479–519.CrossRefMathSciNetGoogle Scholar
  7. [7]
    J. Mitchell,On Carnot-Carathéodory metrics, J. Differential Geom.21 (1985), 35–45.zbMATHMathSciNetGoogle Scholar
  8. [8]
    P. Pansu,Métriques de Carnot-Carathéodory et quasi-isométries des espaces symmétriques de rang un, Ann. of Math. (2)129 (1989), 1–60.CrossRefMathSciNetGoogle Scholar
  9. [9]
    L. P. Rothschild and E. M. Stein,Hypodifferential operators and nilpotent groups, Acta Math.137 (1976), 247–320.CrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2000

Authors and Affiliations

  1. 1.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations