Journal d’Analyse Mathématique

, Volume 80, Issue 1, pp 143–182 | Cite as

Baire’s category theorem and trigonometric series

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Yu. Antonov,Convergence of Fourier series, East J. Approx.2 (1996), 187–196.MATHMathSciNetGoogle Scholar
  2. [2]
    V. Aversa and A. Olevskii,Convergence in category of trigonometric series, Rend. Circ. Mat. Palermo42 (1993), 309–316.MATHMathSciNetGoogle Scholar
  3. [3]
    N. K. Bari,Trigonometric Series (Russian), Fizmatgiz, Moscow, 1961.Google Scholar
  4. [4]
    H. Bohr,Collected Mathematical Works (I A1, I A3, III S1, I A2, I A17, I A19, I A18,I A22), Dansk Matematisk Forening, Copenhagen, 1952.Google Scholar
  5. [5]
    P. du Bois Reymond,Ueber die Fourierschen Reihen, Nachr. Kön. Ges. Wiss. Göttingen 21 (1873), 571–582.Google Scholar
  6. [6]
    E. Borel,Sur les séries de Taylor, C.R. Acad. Sci. Paris123 (1896), 1051–1052.MATHGoogle Scholar
  7. [7]
    L. Carleson,On convergence and growth of partial sums of Fourier series, Acta Math. 116(1966), 133–157.CrossRefMathSciNetGoogle Scholar
  8. [8]
    Yung-min Chen,An almost everywhere divergent Fourier series of the class L(log + log + L)1-ɛ, J. London Math. Soc.44 (1969), 643–654.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    C. Chui and M. N. Parnes,Approximation by overconvergence of power series, J. Math. Anal. Appl.36 (1971), 693–696.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    G. Costakis,Some remarks on universal functions and Taylor series, Math. Proc. Cambridge Philos. Soc, to appear.Google Scholar
  11. [11]
    G. Costakis and A. Melas,On the range of universal functions, submitted.Google Scholar
  12. [12]
    W. Gehlen, W. Luh and J. Müller,On the existence of 0-universal functions, submitted.Google Scholar
  13. [13]
    K-G. Grosse-Erdmann,Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Giessen, Heft 176, ISSN 0373-8221 (1987).Google Scholar
  14. [14]
    K-G. Grosse-Erdmann,Universal families and hypereyclic operators, Bull. Amer. Math. Soc.36 (1999), 345–381.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    G.H. Hardy,On the summability of Fourier series, Proc London Math. Soc.12 (1913), 365–372.CrossRefGoogle Scholar
  16. [16]
    T. Hedberg,The Kolmogorov superposition theorem, Appendix II in Topics in Approximation Theory, Lecture Notes in Math.187, Springer-Verlag, Berlin, 1971.Google Scholar
  17. [17]
    H. Helson,Fourier transforms on perfect sets, Studia Math.14 (1954), 209–213.MathSciNetGoogle Scholar
  18. [18]
    R. A. Hunt,On the convergence of Fourier series, inOrthogonal Expansions and their Continuous Analogues (D. T. Haimo, ed.), Southern Illinois Univ. Press, 1968, pp. 235–255.Google Scholar
  19. [19]
    J.-P. Kahane,Some Random Series of Functions, Heath, Mass., 1968; 2nd edn. Cambridge Univ. Press, 1985, 1993.Google Scholar
  20. [20]
    J.-P Kahane,Séries de Fourier absolument convergentes, Ergebnisse der Mathematik, 50, Springer-Verlag, Berlin, 1970.Google Scholar
  21. [21]
    J.-P. Kahane,Sur les séries de Dirichlet Σ ±n -8, C.R. Acad. Sci. Paris276 (1973), 739–742.MATHMathSciNetGoogle Scholar
  22. [22]
    J.-P Kahane,Sur le théorème de superposition de Kolmogorov, J. Approx. Theory13 (1975), 229–234.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    J.-P. Kahane,Sur le treizième prohème de Hilbert, le théorème de superposition de Kolmogorov et les sommes algèbriques d’arcs croissants, in Harmonic Analysis Iraklion 1978 Proceedings, Lecture Notes in Math.781, Springer-Verlag, Berlin, 1980, pp. 76–101.Google Scholar
  24. [24]
    J.-P. Kahane and Y. Katznelson,Sur les ensembles de divergence des sèries trigonomètriques, Studia Math.26 (1966), 305–306.MATHMathSciNetGoogle Scholar
  25. [25]
    J.-P. Kahane and H. Queffelec,Ordre, convergence et sommabilité des produits de séries de Dirichlet, Ann. Inst. Fourier (Grenoble)47 (1997), 485–529.MATHMathSciNetGoogle Scholar
  26. [26]
    J.-P. Kahane and R. Salem,Ensembles parfaits et séries trigonométriques, Paris, Hermann, 1963 (new edition 1985).Google Scholar
  27. [27]
    Y. Katznelson,An Introduction to Harmonic Analysis, Wiley, New York, 1968; Dover, New York, 1976.MATHGoogle Scholar
  28. [28]
    R. Kaufman,A functional method for linear sets, Israel J. Math.5 (1967), 185–187.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    R. Kaufman,Thin sets, differentiable functions and the category method, J. Fourier Anal. Appl. Special Issue Orsay 1993 (1995), 311–316.Google Scholar
  30. [30]
    S. Kierst and E. Szpilrajn,Sur certaines singularités des fonctions analytiques uniformes, Fund. Math.21 (1933), 267–294.Google Scholar
  31. [31]
    A. Kolmogorov (Kolmogoroff),Une série de Fourier—Lebesgue divergente partout, C.R. Acad. Sci. Paris183 (1926), 1327–1328.Google Scholar
  32. [32]
    A. N. Kolmogorov,On the representation of continuous functions of several variables by superpositions of continuous functions of one variable and addition (in Russian), Dokl. Akad. Nauk SSSR 114(1957), 679–681 ; Engl. transl.: Amer. Math. Soc. Transl.28 (1963), 55–59.MathSciNetGoogle Scholar
  33. [33]
    S. V. Konyagin,On divergence of trigonometric Fourier series everywhere, C.R. Acad. Sci. Paris329 (1999), 693–697.MATHMathSciNetGoogle Scholar
  34. [34]
    P. Koosis,LeÇons sur le théorème de Beurling et Malliavin, Publications du Centre de Recherches Mathématiques, Montréal, 1996.Google Scholar
  35. [35]
    T. Kömer,A pseudofunction on a Helson set I, II, Astérisque5 (1973), 3–224, 231–239.Google Scholar
  36. [36]
    T. Kömer,Kahane’s Helson curve, J. Fourier Anal. Appl. Special Issue Orsay 1993 (1995), 325–346.Google Scholar
  37. [37]
    C. Kuratowski,Topologie, Vol. 1, Monografie matematiczne20, 4th edn., Warszawa, 1958.Google Scholar
  38. [38]
    W. Luh,Approximation analytischer Funktionen durch überkonvergente Potenzreihen und deren Matrix-Transformierten, Mitt. Math. Sem. Giessen88 (1970).Google Scholar
  39. [39]
    W. Luh,Holomorphic monsters, J. Approx. Theory53 (1988), 128–144.MATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    S. Mazurkiewicz,Sur l’approximation des fonctions continues d’une variable réelle par les sommes partielles d’une série de puissances, C.R. Soc. Sci. Lett. Varsovie A. III30 (1937), 25–30.MATHGoogle Scholar
  41. [41]
    A. Melas,On the growth of universal functions, submitted.Google Scholar
  42. [42]
    A. Melas and V. Nestoridis,Universality of Taylor series as a generic property of holomorphic functions, submitted.Google Scholar
  43. [43]
    A. Melas and V. Nestoridis,On various types of universal Taylor series, submitted.Google Scholar
  44. [44]
    A. Melas, V. Nestoridis and I. Papadoperakis,Growth of coefficients of universal Taylor series and comparison of two classes of functions, J. Analyse Math.73 (1997), 187–202.MATHMathSciNetGoogle Scholar
  45. [45]
    D. E. Mensov (Menchoff),Sur les séries trigonométriques universelles, Dokl. Acad. Sci. SSSR (N.S.)49(1945), 79–82.Google Scholar
  46. [46]
    D. E. Mensov (Men’shov),On the partial sums of trigonometric series (Russian), Mat. Sb. (N.S.)20(1947), 197–238.Google Scholar
  47. [47]
    V. Nestoridis,Universal Taylor series, Ann. Inst. Fourier (Grenoble)46 (1996), 1293–1306.MATHMathSciNetGoogle Scholar
  48. [48]
    V. Nestoridis,An extension of the notion of universal Taylor series, in Computational Methods and Function Theory ’97 (CMFT’97), Nicoria, Cyprus, 1997, pp. 421–430.Google Scholar
  49. [49]
    J. O. Oxtoby,Measure and Category, 2nd edn., Springer-Verlag, Berlin, 1980.MATHGoogle Scholar
  50. [50]
    J. Pál,Zwei Meine Bemerkungen, TÔhoku Math. J.6 (1914-15), 42–43.Google Scholar
  51. [51]
    R. E. A. C. Paley and A. Zygmund,On some series of functions (1), (2), (3), Proc. Cambridge Philos. Soc.26 (1930), 337–357 ;26 (1930), 458–174;28 (1932), 190–205.CrossRefGoogle Scholar
  52. [52]
    H. Queffelec,Propriétés presques sûres et quasi-sûres des séries de Dirichlet et des produits d’Euler, Canad. J. Math.32 (1980), 531–558.MATHMathSciNetGoogle Scholar
  53. [53]
    A. I. Seleznev,On universal power series (Russian), Math. Sb. (N.S.)28 (1951), 453–460.MathSciNetGoogle Scholar
  54. [54]
    P Sjölin,An inequality of Paley and convergence a.e. of Walsh—Fourier series, Ark. Mat.7 (1969), 551–570MATHCrossRefMathSciNetGoogle Scholar
  55. [55]
    H. Steinhaus,über die Wahrscheinlichkeit dafür, dass der konvergenzkreis einer Potenzreihe ihre natürliche Grenze ist, Math. Z. 21 (1929), 408–416.MathSciNetGoogle Scholar
  56. [56]
    A. G. Vituskin (Vitushkin),On Representations of functions by means of superpostions and related topics, Enseign. Math.23 (1977), 255–310MathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2000

Authors and Affiliations

  1. 1.Département de MathématiquesUniversité de Paris-SudOrsay CedexFrance

Personalised recommendations