Advertisement

Journal d’Analyse Mathématique

, Volume 80, Issue 1, pp 37–86 | Cite as

Lifting in Sobolev spaces

  • Jean BourgainEmail author
  • Haim Brezis
  • Petru Mironescu
Article

Keywords

Sobolev Space Smooth Domain Harmonic Extension Martingale Representation Nirenberg Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Adams,Sobolev Spaces, Academic Press, New York, 1975.zbMATHGoogle Scholar
  2. [2]
    S. Alinhac and P. Gérard,Opérateurs pseudo-différentiels et théorème de Nash-Moser, Interéditions, Paris, 1991.zbMATHGoogle Scholar
  3. [3]
    F. Bethuel,The approximation problem for Sobolev maps between two manifolds, Acta Math.167 (1991), 153–206.CrossRefMathSciNetzbMATHGoogle Scholar
  4. [4]
    F. Bethuel, H. Brezis and F. Hélein,Ginzburg-Landau Vortices, BirkhÄuser, Boston and Basel, 1994.zbMATHGoogle Scholar
  5. [5]
    F. Bethuel and F. Demengel,Extensions for Sobolev mappings between manifolds, Calc. Var. Partial Differential Equations3 (1995), 475–491.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    F. Bethuel and X. Zheng,Density of smooth functions between two manifolds in Sobolev spaces, J.Funct. Anal.80 (1988), 60–75.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    J.-M. Bony,Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles nonlinéaires, Ann. Sci. Ecole Norm Sup.14 (1981), 209–246.zbMATHMathSciNetGoogle Scholar
  8. [8]
    G. Bourdaud,Ondelettes et espaces de Besov, Rev. Mat. Iberoamericana11(1995), 477–511.zbMATHMathSciNetGoogle Scholar
  9. [9]
    J. Bourgain, H. Brezis and P. Mironescu, in preparation.Google Scholar
  10. [10]
    A. Boutet de Monvel-Berthier, V. Georgescu and R. Purice,Sur un probléme aux limites de la théorie de Ginzburg-Landau, C. R. Acad. Sci. Paris307 (1988), 55–58.zbMATHGoogle Scholar
  11. [11]
    A. Boutet de Monvel-Berthier, V. Georgescu and R. Purice,A boundary value problem related to the Ginzburg-Landau model, Comm. Math. Phys.142 (1991), 1–23.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    H. Brezis,Analyse fonctionnelle: théorie et applications, Masson, Paris, 1983.zbMATHGoogle Scholar
  13. [13]
    H. Brezis, Y. Li, P. Mironescu and L. Nirenberg,Degree and Sobolev spaces, Topol. Methods Nonlinear Anal.13 (1999), 181–190.zbMATHMathSciNetGoogle Scholar
  14. [14]
    H. Brezis and L. Nirenberg,Degree Theory and BMO, Part 1: Compact manifolds without boundaries, Selecta Math.1 (1995), 197–263.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    H. Brezis and L. Nirenberg,Degree Theory and BMO, Part II: Compact manifolds with boundaries, Selecta Math.2 (1996), 309–368.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    G. Carbon,Applications harmoniques à valeurs dans un cercle, C. R. Acad. Sci, Paris314 (1992), 359–362.Google Scholar
  17. [17]
    J.-Y. Chemin,Fluides parfaits incompressibles, Astérisque230 (1995).Google Scholar
  18. [18]
    R. Coifman and Y. Meyer,Une généralisation du théoréme de Calderón sur l’intégrale de Cauchy,in Fourier Analysis, Proc. Sem. at El Escortai, Asoc. Mat. Española, Madrid, 1980, pp. 88–116.Google Scholar
  19. [19]
    R. Devore and V. A. Popov,Interpolation of Besov spaces, Trans. Amer. Math. Soc.305 (1988), 397–414.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    M. Escobedo,Some remarks on the density of regular mappings in Sobolev classes of S M -valued functions, Rev. Mat. Univ. Complut. Madrid2 (1988), 127–144.MathSciNetGoogle Scholar
  21. [21]
    J. Garnett, and P. Jones,BMO from dyadic BMO, Pacific J. Math.99 (1982), 351–371.zbMATHMathSciNetGoogle Scholar
  22. [22]
    A. Garsia,Martingale Inequalities: Seminar Notes on Recent Progress, Benjamin, New York, 1973.zbMATHGoogle Scholar
  23. [23]
    R. Hardt, D. Kinderlehrer and F. H. Lin,The variety of configurations of static liquid crystals, inVariational Methods (H. Berestycki, J.-M. Coron and I Ekeland, eds.), BirkhÄuser, Boston, 1990.Google Scholar
  24. [24]
    F.-H. Lin and T. Rivière,Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents, J. Eur. Math. Soc.1 (1999), 237–311;Erratum, to appear.zbMATHCrossRefGoogle Scholar
  25. [25]
    J. L. Lions and E. Magenes,Problèmes aux limites non homogènes, Dunod, Paris, 1968; English translation. Springer, Berlin, 1972.zbMATHGoogle Scholar
  26. [26]
    V. Maz’ja,Sobolev Spaces, Springer, Berlin, 1985.zbMATHGoogle Scholar
  27. [27]
    L. Nirenberg,On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa13 (1959) 115–162.MathSciNetGoogle Scholar
  28. [28]
    T. Rivière,Lignes de tourbillons dans le modèle abèlien de Higgs, C. R. Acad. Sci Paris321 (1995), 73–76.zbMATHGoogle Scholar
  29. [29]
    T. Rivière,Line vortices in the U(1)-Higgsmodel, Control, Optimization and Calculus of Variations1 (1996), 77–167.zbMATHCrossRefGoogle Scholar
  30. [30]
    T. Rivière,Dense subsets of H1/2(S2;S1), Global Anal. Geom. (to appear).Google Scholar
  31. [31]
    T. Runst,Mapping properties of non-linear operators in spaces of Triebel-Lizorkin and Besov type, Anal. Math.12 (1986), 313–346.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    E. Sandier,Ginzburg-Landau minimizers from Rn+1to Rnand minimal connections, preprint (1999).Google Scholar
  33. [33]
    E. Stein,Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, 1970.Google Scholar
  34. [34]
    H. Triebel,Spline bases and spline representations in function spaces, Arch. Math.36 (1981), 348–359.zbMATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    H. Triebel,Theory of Function Spaces, BirkhÄuser, Boston, 1983.Google Scholar

Copyright information

© Hebrew University of Jerusalem 2000

Authors and Affiliations

  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA
  2. 2.Aanlyse NumériqueUniversité P. et M. CurieParis Cedex 05France
  3. 3.Department of MathematicsRutgers University Hill CenterPiscatawayUSA
  4. 4.Département de mathématiquesUniversité Paris-SudOrsayFrance

Personalised recommendations