Advertisement

Journal d’Analyse Mathématique

, Volume 82, Issue 1, pp 93–118 | Cite as

Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg

  • Hajer BahouriEmail author
  • Patrick Gérard
  • Chao-Jiang Xu
Article

Abstract

In this paper, we prove dispersive and Strichartz inequalities on the Heisenberg group. The proof involves the analysis of Besov-type spaces on the Heisenberg group.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Bahouri, P. Gérard et C.-J. Xu,Estimations de Strichartz généralisées sur le groupe de Heisenberg, Séminaire “Equations aux dérivées partielles” de l'École Polytechnique, Exposé 10, 1997–1998Google Scholar
  2. [2]
    M. Beals,Time decay of·L p norms for solutions of wave equation on exterior domains, inGeometrical Optics and Related Topics (F. Colombini and N. Lerner, eds.), Progress in Nonlinear Differential Equations and their Applications32 (1997), 59–77.Google Scholar
  3. [3]
    J.-M. Bony,Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup.14 (1981), 209–246.zbMATHMathSciNetGoogle Scholar
  4. [4]
    J.-Y. Chemin,Fluides parfaits incompressibles, Astérisque230 (1995).Google Scholar
  5. [5]
    J.-Y. Chemin et C.-J. Xu,Inclusion de Sobolev en calcul de Weyl-Hörmander et champs de vecteurs sous-elliptiques, Ann. Sci. École Norm. Sup.30 (1997), 719–751.zbMATHMathSciNetGoogle Scholar
  6. [6]
    R. R. Coifman et Y. Meyer,Au-delà des opérateurs pseudo-différentiels, Astérisque57 (1978).Google Scholar
  7. [7]
    D. Geller,Fourier analysis on the Heisenberg groups, Proc. Nat. Acad. Sci. U.S.A.74 (1977), 1328–1331.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    P. Gérard, Y. Meyer et F. Oru,Inégalités de Sobolev précisées, Séminaire de EDP, Ecole Polytechnique, Exposé4, 1996–1997.Google Scholar
  9. [9]
    J. Ginibre et G. Velo,Generalized Strichartz inequatities for the wave equations, J. Funct. Anal.133 (1995), 50–68.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    L. Hörmander,The Analysis of Linear Partial Differential Operators, I, Springer, Berlin, 1983.zbMATHGoogle Scholar
  11. [11]
    A. Hulanicki,A functional calculus for Rocland operators on nilpotent Lie groups, Studia Math.78 (1984), 253–266.zbMATHMathSciNetGoogle Scholar
  12. [12]
    L. Kapitanski,Some generalisations of the Strichartz-Brenner inequality, Leningrad Math. J.1 (1990), 693–726.MathSciNetGoogle Scholar
  13. [13]
    M. Keel and T. Tao,Endpoint Strichartz estimates, Amer. J. Math.120 (1998), 955–980.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    N. Lohoue,Estimées L p des solutions de l'équation des ondes sur les variétés riemanniennes, les groupes de Lie et applications, Proc. Conf. Canadian Math. Soc.21 (1997), 103–126.MathSciNetGoogle Scholar
  15. [15]
    W. Magnus, F. Oberhettinger and F. G. Tricomi,Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, Toronto, London, 1953.Google Scholar
  16. [16]
    D. Müller,A restriction theorem for the Heisenberg group, Ann. of Math.131 (1990), 567–587.CrossRefMathSciNetGoogle Scholar
  17. [17]
    D. Müller and E. M. Stein,L p-estimates for the wave equation on the Heisenberg group, prépublication Université de Kiel, Juin 1997.Google Scholar
  18. [18]
    A. I. Nachman,The wave equation on the Heisenberg group, Comm. Partial Differential Equations7 (1982), 675–714.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    M. M. Nessibi and K. Trimeche,Inversion of the Radon transform on the Laguerre hypergroup by using generalized wavelets, J. Math. Anal. Appl.208 (1997), 337–363.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    H. Pecher,Nonlinear small data scattering for the wave and Klein-Gordon equations, Math. Z.185 (1984), 261–270.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    J. Peetre,New Thoughts on Besov Spaces, Duke Univ. Math. Series, 1, 1976.Google Scholar
  22. [22]
    L. Rothschild and E. Stein,Hypoelliptic differential operators and nilpotent groups, Acta Math.137 (1977), 247–320.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    I. E. Segal,Space-time decay for solutions of wave equations, Adv. Math.22 (1976), 304–311.CrossRefGoogle Scholar
  24. [24]
    E. M. Stein,Topics in Harmonic Analysis, Related to the Littlewood-Paley Theory, Princeton University Press, 1970.Google Scholar
  25. [25]
    E. M. Stein,Oscillatory integrals in Fourier analysis, inBeijing Lectures in Harmonic Analysis, Princeton University Press, 1986, pp. 307–355.Google Scholar
  26. [26]
    E. M. Stein,Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993.Google Scholar
  27. [27]
    R. S. Strichartz,A priori estimates for the wave equation and some applications, J. Funct. Anal.5 (1970), 218–235.zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    R. S. Strichartz,Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J.44 (1977), 705–774.zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    M. E. Taylor,Noncommutative harmonic Analysis, Mathematical Surveys and Monographs, No. 22, Amer. Math. Soc., Providence, RI, 1986.zbMATHGoogle Scholar
  30. [30]
    H. Triebel,Theory of Function Spaces, Birkhäuser, Basel, 1983.Google Scholar
  31. [31]
    C.-J. Xu,Semilinear subelliptic equations and Sobolev inequality for vector fields satisfying Hörmander's condition, Chinese Ann. Math. Ser. A15 A (1994), 65–72. Version en anglais: Chinese J. Contemp. Math.15 (1994), 34–40.Google Scholar
  32. [32]
    K. Yajima,Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys.110 (1987), 415–426.zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    C. Zuily,Existence globale de solutions régulières pour l'équation des ondes non linéaires amorties sur le groupe de Heisenberg, Indiana Univ. Math. J.42 (1993), 323–360.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2000

Authors and Affiliations

  • Hajer Bahouri
    • 1
    Email author
  • Patrick Gérard
    • 2
  • Chao-Jiang Xu
    • 3
    • 4
  1. 1.Département de MathématiquesUniversité de TunisTunisTunisie
  2. 2.Département de MathématiquesUniversité de Paris-SudOrsay CedexFrance
  3. 3.UPRES-A6085, MathématiquesUniversité de RouenMont-Saint-AignanFrance
  4. 4.Institut de MathématiquesUniversité de WuhanWuhanChine

Personalised recommendations