Journal d’Analyse Mathématique

, Volume 35, Issue 1, pp 41–96 | Cite as

A construction of the fundamental solution for the Schrödinger equation

  • Daisuke Fujiwara
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.A. Albeverio and R. J. Hoegh Krohn,Mathematical Theory of Feynman Path Integrals, Springer Lecture Notes of Mathematics,523, Springer, Berlin, 1976.MATHGoogle Scholar
  2. 2.
    K. Asada, and D. Fujiwara,On the boundedness of integral transformations with rapidly oscillatory kernels, J. Math. Soc. Japan27, (1975), 623–639.MathSciNetGoogle Scholar
  3. 3.
    K. Asada and D. Fujiwara,On some oscillatory integral transformations in L 2(R n), Japan. J. Math.4 (1978), 299–361; its summary: Bell. Dept. Elementary Education, Chiba Keizai College, No. 1 (1977), 25–42.MathSciNetGoogle Scholar
  4. 4.
    D. G. Babitt,A summation procedure for certain Feynman integrals, J. Math. Phys.4 (1963), 36–41.CrossRefGoogle Scholar
  5. 5.
    G. D. Birkhoff,Quantum mechanics and asymptotic series, Bull. Amer. Math. Soc.39 (1933), 681–700.MATHMathSciNetGoogle Scholar
  6. 6.
    A. P. Calderón and R. Vaillancourt,On the boundedness of pseudo-differential operators, J. Math. Soc. Japan23 (1970), 374–378.CrossRefGoogle Scholar
  7. 7.
    R. H. Cameron,A family of integrals serving to connect the Wiener and Feynman integrals, J. Math. Phys.39 (1960), 126–140.MATHGoogle Scholar
  8. 8.
    P. Dirac,The Principle of Quantum Mechanics, third ed., Oxford, 1947.Google Scholar
  9. 9.
    M. V. Fedoryuk,The stationary phase methods and pseudo-differential operators, Russian Math. Surveys26 (1971), 65–115.CrossRefGoogle Scholar
  10. 10.
    R. P. Feynman,Space time approach to nonrelativistic quantum mechanics, Rev. Mod. Phys.20 (1948), 367–387.CrossRefMathSciNetGoogle Scholar
  11. 11.
    R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integral, McGraw-Hill, New York, 1965.Google Scholar
  12. 12.
    D. Fujiwara,Fundamental solution of partial differential operators of Schrödinger type. I, Proc. Japan Acad.50 (1974), 566–569;II, Proc. Japan Acad.50 (1974), 699–701;III, Proc. Japan Acad.54 (1978), 62–66.MATHMathSciNetGoogle Scholar
  13. 13.
    D. Fujiwara,A construction of the fundamental solution for the Schrödinger equation, to appear in Proc. Japan Acad.Google Scholar
  14. 14.
    D. Fujiwara,A construction of fundamental solution for Schrödinger equation on the spheres, J. Math. Soc. Japan28 (1976), 483–505.MATHMathSciNetGoogle Scholar
  15. 15.
    D. Fujiwara,On the boundedness of integral transformations with highly oscillatory kernels, Proc. Japan Acad.51 (1975), 96–99.MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    I. M. Gelfand and A. M. Yaglom,Integrals in functional spaces and its applications in quantum physics, J. Math. Phys.1 (1960), 48–69.CrossRefGoogle Scholar
  17. 17.
    L. Hörmander,Pseudo-differential operators and hypoelliptic operators, Proc. Symp. on Pure Math. IX, Amer. Math. Soc., 1969.Google Scholar
  18. 18.
    L. Hörmander,Faurier integral operators, I, Acta Math.127 (1971), 77–183.CrossRefGoogle Scholar
  19. 19.
    L. Hörmander,The existence of wave operators in scattering theory, Math. Z.146 (1976), 69–91.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    K. Ito,Generalized uniform complex measures in Hilbertian metric space with their application to the Feynman path integral, Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability, Vol. 2, Univ. of California Press, Berkeley, 1967.Google Scholar
  21. 21.
    J. B. Keller and D. W. McLaughlin,The Feynman integrals, Amer. Math. Monthly82 (1975), 451–465.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    V. P. Maslov,Théorie des perturbations et méthodes asymptotiques, Dunod, Paris, 1970 (French translation)Google Scholar
  23. 23.
    C. Morette,On the definition and approximation of Feynman path integrals, Phys. Rev.81 (1951), 848–852.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    E. Nelson,Feynman path integrals and Schrödinger's equation. J. Math. Phys.5 (1964), 332–343.MATHCrossRefGoogle Scholar
  25. 25.
    H. Rademacher,Uber partielle und totale differenzierbarkeit, I, Math. Ann.99 (1919), 340–359.CrossRefMathSciNetGoogle Scholar
  26. 26.
    J. T. Schwartz,Non-Linear Functional Analysis, Gordon and Breach, New York, 1969.Google Scholar
  27. 27.
    L. Schwartz,Théorie des distributions, 2c ed., Hermann, Paris, 1966.MATHGoogle Scholar
  28. 28.
    H. Whitney,Geometric Integration Theory, Princeton Univ. Press, 1957.Google Scholar
  29. 29.
    K. Yajima,The quasi-classical limit of quantum scattering theory I, preprint, Univ. of Virginia, 1978;II, Long range scattering, preprint, Univ. of Virginia, 1978.Google Scholar

Copyright information

© Hebrew University of Jerusalem 1979

Authors and Affiliations

  • Daisuke Fujiwara
    • 1
  1. 1.Department of Mathematics Faculty of SciencesUniversity of TokyoTokyoJapan

Personalised recommendations