Journal d'Analyse Mathématique

, Volume 48, Issue 1, pp 1–141

Entropy and isomorphism theorems for actions of amenable groups

  • Donald S. Ornstein
  • Benjamin Weiss
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-K]
    W. Ambrose and S. Kakutani,Structure and continuity of measurable flows, Duke Math. J.9 (1942), 25–42.MathSciNetCrossRefMATHGoogle Scholar
  2. [B-G]
    M. Brin and M. Gromov,On the ergodicity of frame flows, Invent. Math.60 (1980), 1–7.MathSciNetCrossRefMATHGoogle Scholar
  3. [B-K]
    M. Brin and A. Katok,On local entropy in geometric dynamics (Rio de Janeiro 1981), Lecture Notes in Math.1007, Springer-Verlag, Berlin, 1982, pp. 30–38.Google Scholar
  4. [B-R]
    R. Burton and A. Rothstein,Lecture Notes in Ergodic Theory, unpublished.Google Scholar
  5. [C-F-W]
    A. Connes, J. Feldman and B. Weiss,An amenable equivalence relation is generated by a single transformation, Ergodic Theory and Dynamical Systems1 (1981), 431–450.MathSciNetCrossRefMATHGoogle Scholar
  6. [C]
    J. P. Conze,Entropie d’ un groupe abelien de transformations, Z. Wahrscheinlichkeitstheor. Verw. Geb.25 (1972), 11–30.MathSciNetCrossRefMATHGoogle Scholar
  7. [F]
    J. Feldman,Lectures on Orbit Equivalence, to appear.Google Scholar
  8. [F-1980]
    J. Feldman,r-entropy, equipartition, and Ornstein’s isomorphism theorem in R n, Isr. J. Math.36 (1980), 321–343.MathSciNetCrossRefMATHGoogle Scholar
  9. [Fi]
    A. Fieldsteel,The relative isomorphism theorem for Bernoulli flows, Isr. J. Math.40 (1981), 197–216.MathSciNetCrossRefMATHGoogle Scholar
  10. [F-M-R]
    J. Feldman, C. Moore and D. Rudolph,Affine extensions of a Bernoulli shift, Trans. Am. Math. Soc.257 (1980), 171–191.MathSciNetCrossRefMATHGoogle Scholar
  11. [Fö]
    H. Föllmer,On entropy and information gain in random fields, Z. Wahrscheinlichkeitstheor. Verw. Geb.26 (1973), 207–217.MathSciNetCrossRefMATHGoogle Scholar
  12. [FØ]
    E. FØlner,On groups with full Banach mean value, Math. Scand.3 (1955), 243–254.MathSciNetCrossRefMATHGoogle Scholar
  13. [Fr]
    J. Fritz,Generalization of McMillan’s theorem to random set functions, Stud. Sci. Math. Hung.5 (1970), 369–394.MathSciNetMATHGoogle Scholar
  14. [Gr]
    R. I. Grigorchuk,The growth degrees of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR48 (1984), 939–985.Google Scholar
  15. [G]
    F. Greenleaf,Invariant Means on Topological Groups, Van Nostrand, New York, 1969.MATHGoogle Scholar
  16. [K-W]
    Y. Katznelson and B. Weiss,Commuting measure-preserving transformations, Isr. J. Math.12 (1972), 161–173.MathSciNetCrossRefMATHGoogle Scholar
  17. [Ki]
    J. C. Kieffer,A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space, Ann. Prob.3 (1975), 1031–1037.MathSciNetCrossRefMATHGoogle Scholar
  18. [Ki-2]
    J. C. Kieffer,Finite generators for an action of an Abelian group on a probability space, unpublished preprint.Google Scholar
  19. [L]
    D. Lind,Locally compact measure preserving flows. Adv. in Math.15 (1975), 175–193.MathSciNetCrossRefMATHGoogle Scholar
  20. [M-vN]
    F. J. Murray and J. von Neumann,Rings of operators IV, Ann. Math.44 (1943), 716–804.MathSciNetCrossRefMATHGoogle Scholar
  21. [O]
    D. Ornstein,Ergodic Theory, Randomness and Dynamical Systems, Yale Univ. Press, New Haven, 1974.MATHGoogle Scholar
  22. [O-W-1980]
    D. Ornstein and B. Weiss,Ergodic theory of amenable group actions I. The Rohlin lemma. Bull. Am. Math. Soc.2 (1980), 161–164.MathSciNetCrossRefMATHGoogle Scholar
  23. [O-W-1983]
    D. Ornstein and B. Weiss,The Shannon-McMillan-Breiman theorem for a class of amenable groups, Isr. J. Math.44 (1983), 53–60.MathSciNetCrossRefMATHGoogle Scholar
  24. [P]
    J.-P. Pier,Amenable Locally Compact Groups, John Wiley, New York, 1984.MATHGoogle Scholar
  25. [P-S]
    B. S. Pitskel and A. M. Stepin,On the property of uniform distribution of entropy of computative groups with metric automorphisms, Dokl. Akad. Nauk SSSR198 (1971), 1021–1024.MathSciNetGoogle Scholar
  26. [Ra]
    A. Ramsay,Measurable group actions are essentially Borel actions, Isr. J. Math.51 (1985), 339–346.MathSciNetCrossRefMATHGoogle Scholar
  27. [Ru-1978a]
    D. Rudolph,If a finite extension of a Bernoulli shift has no finite rotation factor it is Bernoulli, Isr. J. Math.30 (1978), 193–206.MathSciNetCrossRefMATHGoogle Scholar
  28. [Ru-1978b]
    D. Rudolph,Classifying the isometric extensions of a Bernoulli shift, J. Analyse Math.34 (1978), 36–59.MathSciNetCrossRefMATHGoogle Scholar
  29. [Ru-1983]
    D. Rudolph,An isomorphism theory for Bernoulli free, Z-skew-compact group actions, Adv. in Math.47 (1983), 241–257.MathSciNetCrossRefMATHGoogle Scholar
  30. [Ru-1985]
    D. Rudolph,Restricted orbit equivalence. Memoirs Am. Math. Soc. No. 323 (1985).Google Scholar
  31. [St]
    A. M. Stepin,On an entropy invariant of decreasing sequences of measurable partitions, Funct. Anal. Appl.5 (1971), 80–84.Google Scholar
  32. [T]
    A. J. Thomasian,An elementary proof of the AEP of information theory, Ann. Math. Stat.31 (1960), 452–456.MathSciNetCrossRefMATHGoogle Scholar
  33. [Th]
    J.-P. Thouvenot,Convergence en moyenne de l’information pour l’action de Z α, Z. Wahrscheinlichkeitstheor. Verw. Geb.24 (1972), 135–137.MathSciNetCrossRefMATHGoogle Scholar
  34. [V]
    V. S. Varadarajan,Groups of automorphisms of Borel spaces, Trans. Am. Math. Soc.109 (1963), 191–219.MathSciNetCrossRefMATHGoogle Scholar
  35. [Z]
    R. Zimmer,Ergodic Theory and Semisimple Groups, Birkhausen, Boston, 1984.CrossRefMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1987

Authors and Affiliations

  • Donald S. Ornstein
    • 1
  • Benjamin Weiss
    • 2
  1. 1.Department of MathematicsStanford UniversityStanfordUSA
  2. 2.Institute of MathematicsThe Hebrew University of JersusalemJerusalemIsrael

Personalised recommendations