Journal d’Analyse Mathématique

, Volume 98, Issue 1, pp 317–348

Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Ambrosetti and M. Badiale,Homoclinics: Poincaré-Melnikov type results via a variational approach, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998), 233–252.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    A. Ambrosetti and A. Malchiodi,Perturbation Methods and Semilinear Elliptic Problems on ℝ n, Progress in mathematics, Vol. 240, Birkhäuser, Basel, 2005.Google Scholar
  3. [3]
    A. Ambrosetti, V. Felli and A. Malchiodi,Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. European Math. Soc.7 (2005), 117–144.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Ambrosetti, A. Malchiodi and W.-M. Ni,Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, Part I, Comm. Math. Phys.235 (2003), 427–466.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    A. Ambrosetti, A. Malchiodi and S. Secchi,Multiplicity results for some nonlinear singularly perturbed elliptic problems on R n, Arch. Rational Mech. Anal.159 (2001), 253–271.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    A. Bahri and P. L. Lions,On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire14 (1997), 365–413.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    J. Chabrowski,Variational Methods for Potential Operator Equations. With Applications to Nonlinear Elliptic Equations, Walter de Gruyter & Co., Berlin, 1997.MATHGoogle Scholar
  8. [8]
    D. Gilbarg and N. S. Trudinger,Elliptic Partial Differential Equations of Second Order, Second edition, Springer-Verlag, Berlin, 1983.MATHGoogle Scholar
  9. [9]
    N. K. Kwong,Uniqueness of positive solutions of Δu−u+u p =0 in ℝ n, Arch. Rational Mech. Anal.105 (1989), 243–266.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    N. N. Lebedev,Special Functions and their Applications, Prentice Hall, Inc., Englewood Cliffs, N.J., 1965.MATHGoogle Scholar
  11. [11]
    E. S. Noussair and C. A. Swanson,Decaying solutions of semilinear elliptic equations in ℝ n, SIAM J. Math. Anal.20 (1989), 1336–1343.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Y-G. Oh,On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potentials, Comm. Math. Phys.131 (1990), 223–253.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    P. H. Rabinowitz,On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys.43 (1992), 270–291.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    M. Schneider,Entire solutions of semilinear elliptic problems with indefinite nonlinearities, PhD Thesis, Universität Mainz, 2001.Google Scholar

Copyright information

© The Hebrew University Magnes Press 2006

Authors and Affiliations

  1. 1.S.I.S.S.A.TriesteItaly
  2. 2.Department of Mathematical AnalysisUniversity of GranadaGranadaSpain

Personalised recommendations