Journal d’Analyse Mathématique

, Volume 98, Issue 1, pp 183–220

The Essential Spectrum of Schrödinger, Jacobi, and CMV Operators

Article

Abstract

We provide a very general result which identifies the essential spectrum of broad classes of operators as exactly equal to the closure of the union of the spectra of suitable limits at infinity. Included is a new result on the essential spectra when potentials are asymptotic to isospectral tori. We also recover within a unified framework the HVZ Theorem and Krein's results on orthogonal polynomials with finite essential spectra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Agmon,Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators, Princeton University Press, Princeton, NJ, 1982.MATHGoogle Scholar
  2. [2]
    M. Aizenman and B. Simon,Brownian motion and Harnack's inequality for Schrödinger operators, Comm. Pure Appl. Math.35 (1982), 209–273.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    N. I. Akhiezer and M. Krein,Some Questions in the Theory of Moments, American Mathematical Society, Providence, RI, 1962; Russian original, 1938.MATHGoogle Scholar
  4. [4]
    W. O. Amrein, M. Mântoiu and R. Purice,Propagation properties for Schrödinger operators affiliated with certain C * -algebras, Ann. Henri Poincaré3 (2002), 1215–1232.MATHCrossRefGoogle Scholar
  5. [5]
    J. Avron, I. Herbst and B. Simon,Schrödinger operators with magnetic fields, II. Separation of center of mass in homogeneous magnetic fields, Ann. Phys.114 (1978), 431–451.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    J. Avron, P. van Mouche and B. Simon,On the measure of the spectrum for the almost Mathieu operator, Comm. Math. Phys.132 (1990), 103–118.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    J. Avron and B. Simon,Almost periodic Schrödinger operators, II. The integrated density of states, Duke Math. J.50 (1983), 369–391.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    M. L. Baeteman and K. Chadan,Scattering theory with highly singular oscillating potentials, Ann. Inst. H. Poincaré Sect. A (N.S.)24 (1976), 1–16.MathSciNetGoogle Scholar
  9. [9]
    D. Barrios Rolanía and G. López Lagomasino,Ratio asymptotics for polynomials orthogonal on arcs of the unit circle, Constr. Approx.15 (1999), 1–31.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    P. Briet and H. D. Cornean,Locating the spectrum for magnetic Schrödinger and Dirac operators, Comm. Partial Differential Equations27 (2002), 1079–1101.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    M. J. Cantero, L. Moral and L. VelázquezMeasures on the unit circle and unitary truncations of unitary operators, J. Approx. Theory, to appear.Google Scholar
  12. [12]
    K. Chadan,The number of bound states of singular oscillating potentials, Lett. Math. Phys.1 (1975/1977), 281–287.CrossRefMathSciNetGoogle Scholar
  13. [13]
    K. Chadan and A. Martin,Inequalities on the number of bound states in oscillating potentials, Comm. Math. Phys.53 (1977), 221–231.CrossRefMathSciNetGoogle Scholar
  14. [14]
    T. S. Chihara,The derived set of the spectrum of a distribution function, Pacific J. Math.35 (1970), 571–574.MathSciNetGoogle Scholar
  15. [15]
    T. S. Chihara,An Introduction to Orthogonal Polynomials, Gordon and Breach, New York-London-Paris, 1978.MATHGoogle Scholar
  16. [16]
    T. S. Chihara,The three term recurrence relation and spectral properties of orthogonal polynomials, inOrthogonal Polynomials (Columbus, OH, 1989), Kluwer, Dordrecht, 1990, pp. 99–114.Google Scholar
  17. [17]
    M. Combescure,Spectral and scattering theory for a class of strongly oscillating potentials, Comm. Math. Phys.73 (1980), 43–62.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    M. Combescure and J. Ginibre,Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials, Ann. Inst. H. Poincaré Sect. A (N.S.)24 (1976), 17–30.MathSciNetGoogle Scholar
  19. [19]
    H. D. Cornean,On the essential spectrum of two-dimensional periodic magnetic Schrödinger operators, Lett. Math. Phys.49 (1999), 197–211.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon,Schrödinger Operators With Application to Quantum Mechanics and Global Geometry, Springer, Berlin, 1987.MATHGoogle Scholar
  21. [21]
    D. Damanik, D. Hundertmark and B. Simon,Bound states and the Szegő condition for Jacobi matrices and Schrödinger operators, J. Funct. Anal.205 (2003), 357–379.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    B. A. Dubrovin, V. B. Matveev and S. P. Novikov,Nonlinear equations of Korteweg-de Vries type, finite-band linear operators and Abelian varieties, Uspekhi Mat. Nauk31 (1976), no. 1 (187), 55–136 [Russian].MATHMathSciNetGoogle Scholar
  23. [23]
    V. Enss,A note on Hunziker's theorem, Comm. Math. Phys.52 (1977), 233–238.CrossRefMathSciNetGoogle Scholar
  24. [24]
    H. Flaschka and D. W. McLaughlin,Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions, Prog. Theoret. Phys.55 (1976), 438–456.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    V. Gårding,On the essential spectrum of Schrödinger operators, J. Funct. Anal.52 (1983), 1–10.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    V. Georgescu and S. Golénia,Isometries, Fock spaces, and spectral analysis of Schrödinger operators on trees, J. Funct. Anal.227 (2005), 389–429.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    V. Georgescu and A. Iftimovici,Crossed products of C * -algebras and spectral analysis of quantum Hamiltonians, Comm. Math. Phys.228 (2002), 519–560.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    V. Georgescu and A. Iftimovici,C * -algebras of quantum Hamiltonians, inOperator Algebras and Mathematical Physics (Constanta, 2001), Theta, Bucharest, 2003, pp. 123–167.Google Scholar
  29. [29]
    V. Georgescu and A. Iftimovici,Riesz-Kolmogorov compactness criterion Lorentz convergence and Ruelle theorem on locally compact abelian groups, Potential Anal.20 (2004), 265–284.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    L. Golinskii,Singular measures on the unit circle and their reflection coefficients, J. Approx. Theory103 (2000), 61–77.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    A. Gulisashvili,On the Kato classes of distributions and the BMO-classes, inDifferential Equations and Control Theory (Athens, OH, 2000), Dekker, New York, 2002, pp. 159–176.Google Scholar
  32. [32]
    B. Helffer,On spectral theory for Schrödinger operators with magnetic potentials, inSpectral and Scattering Theory and Applications, Math. Soc. Japan, Tokyo, 1994, pp. 113–141.Google Scholar
  33. [33]
    B. Helffer and A. Mohamed,Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier (Grenoble)38 (1988), 95–112.MATHMathSciNetGoogle Scholar
  34. [34]
    R. Hempel and I. Herbst,Strong magnetic fields, Dirichlet boundaries, and spectral gaps, Comm. Math. Phys.169 (1995), 237–259.MATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    G. Hoever,On the spectrum of two-dimensional Schrödinger operators with spherically symmetric, radially periodic magnetic fields, Comm. Math. Phys.189 (1997), 879–890.MATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    D. Hundertmark and W. Kirsch,Spectral theory of sparse potentials, inStochastic Processes, Physics and Geometry: New Interplays, I (Leipzig, 1999), American Mathematical Society, Providence, RI, 2000, pp. 213–238.Google Scholar
  37. [37]
    W. Hunziker,On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys. Acta39 (1966), 451–462.MATHMathSciNetGoogle Scholar
  38. [38]
    V. Iftimie,Opérateurs différentiels magnétiques: Stabilité des trous dans le spectre, invariance du spectre essentiel et applications, Comm. Partial Differential Equations18 (1993), 651–686.MATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    Y. Inahama and S. Shirai,The essential spectrum of Schrödinger operators with asymptotically constant magnetic fields on the Poincaré upper-half plane, J. Math. Phys.44 (2003), 89–106.MATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    R. S. Ismagilov,The spectrum of the Sturm-Liouville equation with oscillating potential, Math. Notes37 (1985), 476–482; Russian original in Mat. Zametki37 (1985), 869–879, 942.MATHMathSciNetGoogle Scholar
  41. [41]
    A. R. Its and V. B. Matveev,Coordinatewise asymptotic behavior for Schrödinger's equation with a rapidly oscillating potential, inMathematical Questions in the Theory of Wave Propagation, Vol. 7, Zap. Naučn. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI)51 (1975), 119–122, 218 [Russian].Google Scholar
  42. [42]
    A. Iwatsuka,The essential spectrum of two-dimensional Schrödinger operators with perturbed constant magnetic fields, J. Math. Kyoto Univ.23 (1983), 475–480.MATHMathSciNetGoogle Scholar
  43. [43]
    J. Janas and S. Naboko,Spectral analysis of selfadjoint Jacobi matrices with periodically modulated entries, J. Funct. Anal.191 (2002), 318–342.MATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    J. Janas, S. Naboko and G. Stolz,Spectral theory for a class of periodically perturbed unbounded Jacobi matrices: Elementary methods, J. Comput. Appl. Math.171 (2004), 265–276.MATHCrossRefMathSciNetGoogle Scholar
  45. [45]
    M. Klaus,On-d 2 /dx 2 +V where V has infinitely many “bumps”, Ann. Inst. H. Poincaré Sect. A (N.S.),38 (1983), 7–13.MathSciNetGoogle Scholar
  46. [46]
    I. M. Krichever,Algebraic curves and nonlinear difference equations, Uspekhi Mat. Nauk33 (1978), no. 4 (202), 215–216 [Russian].MATHMathSciNetGoogle Scholar
  47. [47]
    I. M. Krichever,Appendix to “Theta-functions and nonlinear equations” by B.A. Dubrovin, Russian Math. Surveys,36 (1981), 11–92 (1982); Russian original in Uspekhi Mat. Nauk36 (1981), no. 2 (218), 11–80.CrossRefMathSciNetGoogle Scholar
  48. [48]
    B. V. Lange and V. S. Rabinovich,Pseudodifferential operators in ℝ n and limit operators, Math. USSR Sb.57 (1987), 183–194; Russian original in Mat. Sb. (N.S.)129 (1986), 175–185.MATHCrossRefGoogle Scholar
  49. [49]
    Y. Last and B. Simon,Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math.135 (1999), 329–367.MATHCrossRefMathSciNetGoogle Scholar
  50. [50]
    H. Leinfelder,Gauge invariance of Schrödinger operators and related spectral properties, J. Operator Theory9 (1983), 163–179.MATHMathSciNetGoogle Scholar
  51. [51]
    H. Leinfelder and C. Simader,Schrödinger operators with singular magnetic vector potentials, Math. Z.176 (1981), 1–19.MATHCrossRefMathSciNetGoogle Scholar
  52. [52]
    B. M. Levitan,Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987.MATHGoogle Scholar
  53. [53]
    M. Loss and B. Thaller,Scattering of particles by long-range magnetic fields, Ann. Physics176 (1987), 159–180.MATHCrossRefMathSciNetGoogle Scholar
  54. [54]
    D. Maki,A note on recursively defined orthogonal polynomials, Pacific J. Math.28 (1969), 611–613.MATHMathSciNetGoogle Scholar
  55. [55]
    A. Manavi and J. Voigt,Maximal operators associated with Dirichlet forms perturbed by measures, Potential Anal.16 (2002), 341–346.MATHCrossRefMathSciNetGoogle Scholar
  56. [56]
    M. Măntoiu,C * -algebras, dynamical systems at infinity and the essential spectrum of generalized Schrödinger operators, J. Reine Angew. Math.550 (2002), 211–229.MathSciNetGoogle Scholar
  57. [57]
    M. Măntoiu, R. Purice and S. Richard,Spectral and propagation results for magnetic Schrödinger operators; a C * -algebraic framework, preprint.Google Scholar
  58. [58]
    V. B. Matveev and M. M. Skriganov,Wave operators for a Schrödinger equation with rapidly oscillating potential, Dokl. Akad. Nauk SSSR202 (1972), 755–757 [Russian].MathSciNetGoogle Scholar
  59. [59]
    H. P. McKean and P. van Moerbeke,The spectrum of Hill's equation, Invent. Math.30 (1975), 217–274.MATHCrossRefMathSciNetGoogle Scholar
  60. [60]
    K. Miller,Bound States of Quantum Mechanical Particles in Magnetic Fields, Ph.D. dissertation, Princeton University, 1982.Google Scholar
  61. [61]
    K. Miller and B. Simon,Quantum magnetic Hamiltonians with remarkable spectral properties, Phys. Rev. Lett.44 (1980), 1706–1707.CrossRefMathSciNetGoogle Scholar
  62. [62]
    E. M. Mukhamadiev,Normal solvability and Noethericity of elliptic operators in spaces of functions on ℝ n.I, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)110 (1981), 120–140.MathSciNetGoogle Scholar
  63. [63]
    S. Nakamura,Band spectrum for Schrödinger operators with strong periodic magnetic fields, inPartial Differential Operators and Mathematical Physics (Holzhau, 1994), Birkhäuser, Basel, 1995, pp. 261–270.Google Scholar
  64. [64]
    M. Pascu,On the essential spectrum of the relativistic magnetic Schrödinger operator, Osaka J. Math.39 (2002), 963–978.MATHMathSciNetGoogle Scholar
  65. [65]
    V. S. Rabinovich,The Fredholm property of pseudodifferential operators on ℝ n in the scale of spaces L 2, p, Siberian Math. J.29 (1988), 635–646; Russian original in Sibirsk. Mat. Zh.29 (1988), 149–161, 225.MATHCrossRefMathSciNetGoogle Scholar
  66. [66]
    V. S. Rabinovich,Discrete operator convolutions and some of their applications, Math. Notes51 (1992), 484–492.CrossRefMathSciNetGoogle Scholar
  67. [67]
    V. S. Rabinovich,Essential spectrum of perturbed pseudodifferential operators. Applications to the Schrödinger, Klein-Gordon, and Dirac operators, Russian J. Math. Phys.12 (2005), 62–80.MATHMathSciNetGoogle Scholar
  68. [68]
    V. S. Rabinovich, S. Roch and B. Silbermann,Fredholm theory and finite section method for band-dominated operators, Dedicated to the memory of Mark Grigorievich Krein (1907–1989), Integral Equations Operator Theory30 (1998), 452–495.MATHCrossRefMathSciNetGoogle Scholar
  69. [69]
    V. S. Rabinovich, S. Roch and B. Silbermann,Band-dominated operators with operator-valued coefficients, their Fredholm properties and finite sections, Integral Equations Operator Theory40 (2001), 342–381.MATHCrossRefMathSciNetGoogle Scholar
  70. [70]
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, I: Functional Analysis, Academic Press, New York, 1972.Google Scholar
  71. [71]
    O. Rodot,On a class of anisotropic asymptotically periodic Hamiltonians, C. R. Math. Acad. Sci. Paris334 (2002), 575–579.MATHMathSciNetGoogle Scholar
  72. [72]
    A. Sarkar,Spectrum of a Schrödinger operator with a class of damped oscillating potentials, J. Indian Inst. Sci.60 (1978), 65–71.MATHMathSciNetGoogle Scholar
  73. [73]
    M. Schechter,Wave operators for oscillating potentials, Lett. Math. Phys.2 (1977/1978), 127–132.CrossRefMathSciNetGoogle Scholar
  74. [74]
    I. M. Sigal,Geometric methods in the quantum many-body problem. Nonexistence of very negative ions, Comm. Math. Phys.85 (1982), 309–324.MATHCrossRefMathSciNetGoogle Scholar
  75. [75]
    B. Simon,Geometric methods in multiparticle quantum systems, Comm. Math. Phys.55 (1977), 259–274.MATHCrossRefMathSciNetGoogle Scholar
  76. [76]
    B. Simon,Maximal and minimal Schrödinger forms, J. Operator Theory1 (1979), 37–47.MATHMathSciNetGoogle Scholar
  77. [77]
    B. Simon,Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, American Mathematical Society, Providence, RI, 2005.MATHGoogle Scholar
  78. [78]
    B. Simon,Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, American Mathematical Society, Providence, RI, 2005.MATHGoogle Scholar
  79. [79]
    M. M. Skriganov,The spectrum of a Schrödinger operator with rapidly oscillating potential, inBoundary Value Problems of Mathematical Physics, Vol. 8, Trudy Mat. Inst. Steklov.125 (1973), 187–195, 235 [Russian].Google Scholar
  80. [80]
    B. Thaller,The Dirac Equations, Springer, Berlin, 1992.Google Scholar
  81. [81]
    K. Uhlenbeck,Removable singularities in Yang-Mills fields, Comm. Math. Phys.83 (1982), 11–29.MATHCrossRefMathSciNetGoogle Scholar
  82. [82]
    T. Umeda and M. Nagase,Spectra of relativistic Schrödinger operators with magnetic vector potentials, Osaka J. Math.30 (1993), 839–853.MATHMathSciNetGoogle Scholar
  83. [83]
    P. van Moerbeke,The spectrum of Jacobi matrices, Invent. Math.37 (1976), 45–81.MATHCrossRefMathSciNetGoogle Scholar
  84. [84]
    C. van Winter,Theory of finite systems of particles. I. The Green function, Mat.-Fys. Skr. Danske Vis. Selsk.2, 1964, no. 8.Google Scholar
  85. [85]
    S. A. Vugalter,Limits on stability of positive molecular ions in a homogeneous magnetic field, Comm. Math. Phys.180 (1996), 709–731.MATHCrossRefMathSciNetGoogle Scholar
  86. [86]
    S. A. Vugalter and G. M. Zhislin,On the localization of the essential spectrum of energy operators for n-particle quantum systems in a magnetic field, Theoret. and Math. Phys.97 (1993), 1171–1185 (1994); Russian original in Teoret. Mat. Fiz.97 (1993), 94–112.CrossRefMathSciNetGoogle Scholar
  87. [87]
    S. A. Vugalter and G. M. Zhislin,Spectral properties of Hamiltonians with a magnetic field under fixation of pseudomomentum, Theoret. and Math. Phys.113 (1997), 1543–1558 (1998); Russian original in Teoret. Mat. Fiz.113 (1997), 413–431.CrossRefMathSciNetGoogle Scholar
  88. [88]
    G. M. Zhislin,A study of the spectrum of the Schrödinger operator for a system of several particles, Trudy Moskov. Mat. Obŝĉ.9 (1960), 81–120 [Russian].Google Scholar
  89. [89]
    G. M. Zhislin,The essential spectrum of many-particle systems in magnetic fields, St. Petersburg Math. J.8 (1997), 97–104; Russian original in Algebra i Analiz8 (1996), 127–136.MathSciNetGoogle Scholar
  90. [90]
    G. M. Zhislin,Localization of the essential spectrum of the energy operators of quantum systems with a nonincreasing magnetic field, Theoret. and Math. Phys.107 (1996), 720–732 (1997); Russian original in Teoret. Mat. Fiz.107 (1996), 372–387.MATHCrossRefMathSciNetGoogle Scholar
  91. [91]
    G. M. Zhislin,Spectral properties of Hamiltonians with a magnetic field under fixation of pseudomomentum. II, Theoret. and Math. Phys.118 (1999), 12–31; Russian original in Teoret. Mat. Fiz.118 (1999), 15–39.MATHCrossRefMathSciNetGoogle Scholar
  92. [92]
    G. M. Zhislin and S. A. Vugalter,Geometric methods for many-particle Hamiltonians with magnetic fields, inAdvances in Differential Equations and Mathematical Physics (Atlanta, GA, 1997), Contemp. Math., 217, American Mathematical Society, Providence, RI, 1998, pp. 121–135.Google Scholar

Copyright information

© The Hebrew University Magnes Press 2006

Authors and Affiliations

  1. 1.Institute of MathematicsThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Mathematics 253-37 California Institute of TechnologyPasadenaUSA

Personalised recommendations