Journal d’Analyse Mathématique

, Volume 6, Issue 1, pp 261–322 | Cite as

Perturbation theory for nullity, deficiency and other quantities of linear operators

  • Tosio Kato


Hilbert Space Banach Space Linear Operator Perturbation Theory Singular Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. I. Achieser and I. M. Glasmann, Theorie der linearen Operatoren im Hilbert-Raum, Berlin, 1954.Google Scholar
  2. 2.
    P. Alexandroff and H. Hopf, Topologie I, Berlin, 1935.Google Scholar
  3. 3.
    F. Atkinson, A spectral problem for completely continuous operators,Acta Math. Sci. Hungaricae 3 (1952), 53–60.zbMATHCrossRefGoogle Scholar
  4. 4.
    F. Atkinson, On relatively regular operators,Acta Sci. Math. 15 (1953), 38–56.zbMATHGoogle Scholar
  5. 5.
    Banach, Théorie des opérations linéaires, Warszawa, 1932.Google Scholar
  6. 6.
    J. Dieudonné, Sur les homomorphismes d'espaces normés,Bull. Sci. Math. (2) 67 (1943), 72–84.zbMATHMathSciNetGoogle Scholar
  7. 7.
    B. Friedman, Operators with a closed range,Comm. Pure and Appl. Math. 8 (1955), 539–550.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    I. C. Gokhberg and M. G. Krein, Osnovnye polozenija o defektnykh cislakh, kornevych cislakh i indeksakh lineinykh operatorov,Uspekhi Mat. Nauk. 12, 2 (74) (1957), 43–118.Google Scholar
  9. 9.
    F. Hausdorff, Zur Theorie der linearen Räume,Journ. f. reine u. angew. Math. 167 (1932), 294–311.zbMATHGoogle Scholar
  10. 10.
    M. Hukuhara, Théorie des endomorphismes de l'espace vectoriel,Journ. Faculty Sci. Univ. Tokyo, Sec. 1 7 (1954), 129–192; 305–332.MathSciNetGoogle Scholar
  11. 11.
    B. Sz. Nagy, On the stability of the index of unbounded linear transformations,Acta Matb. Sci. Hungaricae 3 (1952), 49–52.zbMATHCrossRefGoogle Scholar
  12. 12.
    B. Sz. Nagy, On a spectral problem of Atkinson,Acta Math. Sci. Hungaricae 3 (1952), 62–66.Google Scholar
  13. 13.
    B. Yood, Properties of linear transformations preserved under addition of a compietely continuous transformation.Duke Math. J. 18 (1951), 599–612.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    K. Yosida, Linear operators (in Japanese), Tokyo, 1943.Google Scholar
  15. 15.
    A. C. Zaanen, Linear analysis, New-York, 1953.Google Scholar

Copyright information

© Hebrew University of Jerusalem 1958

Authors and Affiliations

  • Tosio Kato
    • 1
  1. 1.Department of PhysicsUniversity of TokyoTokyoJapan

Personalised recommendations