Journal d’Analyse Mathématique

, Volume 59, Issue 1, pp 133–160

Trace distributions associated to the Schrödinger operator

  • Anders Melin
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Agmon and Y. Kannai,On the asymptotic behaviour of spectral functions and resolvent kernels of elliptic operators, Isr. J. Math.5 (1967), 1–30.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    S. Agmon,Lower bounds for solutions of the Schrödinger equations, J. Analyse Math.23 (1970), 1–25.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    M.S. Birman and M.G. Krein,On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR144 (1962), 475–478. Also in Soviet Math. Dokl.3 (1962), 740–744.MathSciNetGoogle Scholar
  4. [4]
    Y. Colin de Verdier,Une formule de trace pour l’opérateur de Schrödinger dans R 3, Ann. Sci. Éc. Norm Sup.14 (1981), 27–39.Google Scholar
  5. [5]
    L. Guillopé,Asymptotique de la phase de diffusion pour l’opérateur de Schrödinger dans R n, Séminaire sur les équations dérivées partielles 1984–1985, no. V, École Polytechnique, 1985.Google Scholar
  6. [6]
    L. Hörmander,The Analysis of Linear Partial Differential Operators I–IV, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.Google Scholar
  7. [7]
    L. Hörmander,On the asymptotic distribution of the eigenvalues of pseudodifferential operators in R n, Ark. Mat.17 (1979), 297–313.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    L. Hörmander,The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32 (1979), 359–443.MATHCrossRefGoogle Scholar
  9. [9]
    A. Melin,On functions of the Schrödinger operator and a trace formula, inIntegral Equations and Inverse Problems, Pitman Research Notes in Mathematics Series 235 (1991), 154–174.Google Scholar
  10. [10]
    P. Perry, I.M. Sigal and B. Simon,Spectral analysis of N-body Schrödinger operators, Ann. of Math.114 (1981), 519–567.CrossRefMathSciNetGoogle Scholar
  11. [11]
    D. Robert,Asymptotique de la phase de diffusion a haute énergie pour des perturbations du Laplacien, Séminaire sur les équations dérivées partielles 1988–1989, no. XVII, École Polytechnique, 1989.Google Scholar
  12. [12]
    D. Robert,Asymptotique a grande énergie de la phase de diffusion pour un potential, École Polytechnique, 1989, preprint.Google Scholar
  13. [13]
    I.M. Sigal,On long range scattering, Duke Math. J.60 (1990), 473–496.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    B. Simon,Trace ideals and their applications, London Math. Soc. Lecture Notes Series 35, Cambridge University Press, 1979.Google Scholar

Copyright information

© The Magnes Press, The Hebrew University 1992

Authors and Affiliations

  • Anders Melin
    • 1
  1. 1.Department of MathematicsLund Institute of TechnologyLundSweden

Personalised recommendations