Advertisement

Journal d’Analyse Mathématique

, Volume 33, Issue 1, pp 222–272 | Cite as

Interval exchange transformations

  • William A. Veech
Article

Keywords

Invariant Measure Maximal Interval Interval Exchange Integer Matrix Exchange Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bourbaki,Algèbre, Ch. IX, Paris, Hermann, 1959.zbMATHGoogle Scholar
  2. 2.
    N. A. Friedman,Introduction to Ergodic Theory, New York, Van Nostrand-Rheinhold, 1970.zbMATHGoogle Scholar
  3. 3.
    H. Furstenberg,Stationary Processes and Prediction theory, Annals of Math. Studies, Princeton, 1960.Google Scholar
  4. 4.
    A. Hajian and S. Kakutani,Weakly wandering sets and invariant measures, Trans. Amer. Math. Soc.110 (1964), 136–151.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    P. R. Halmos,Lectures on Ergodic Theory, Math. Soc. of Japan, 1956.Google Scholar
  6. 6.
    G. H. Hardy and E. M. Wright,An Introduction to the Theory of Numbers, Oxford, Clarendon Press, 1938.Google Scholar
  7. 7.
    S. Kakutani,Induced measure preserving transformations, Proc. Imp. Acad. Tokyo19 (1943), 635–641.zbMATHMathSciNetGoogle Scholar
  8. 8.
    M. Keane,Interval exchange transformations, Math. Z.141 (1975), 25–31.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Keane,Non-ergodic interval exchange transformations, Israel J. Math.26 (1977), 188–196.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    C. Boldrighini, M. Keane and F. Marchetti,Billiards in polygons, preprint, 1977.Google Scholar
  11. 11.
    H. Keynes and D. Newton,A minimal non-uniquely ergodic interval exchange transformation, Math. Z.148 (1976), 101–105.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    V. A. Rohlin,Exact endomorphisms of a Lebesgue space, Amer. Math. Soc. Transl. (2)49 (1966), 171–240.Google Scholar
  13. 13.
    Ya. G. Sinai,Introduction to Ergodic Theory, Princeton Lecture Notes Series, Princeton University Press, 1977.Google Scholar
  14. 14.
    W. A. Veech,A Second Course in Complex Analysis, New York, Benjamin, 1967.zbMATHGoogle Scholar
  15. 15.
    W. A. Veech,Topological dynamics, to appear in Bull. Amer. Math. Soc.Google Scholar

Copyright information

© Hebrew University of Jerusalem 1978

Authors and Affiliations

  • William A. Veech
    • 1
  1. 1.Department of MathematicsRice UniversityHoustonUSA

Personalised recommendations