Journal d’Analyse Mathématique

, Volume 33, Issue 1, pp 146–167

Theory of Bloch waves

  • Calvin H. Wilcox
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Agmon,Lectures on Elliptic Boundary Value Problems, Van Nostrand, New York, 1965.MATHGoogle Scholar
  2. 2.
    F. Bloch,Über die Quantenmechanik der Electronen in Kristallgittern, Z. Phys.52 (1928), 555–600.Google Scholar
  3. 3.
    S. Bochner and W. T. Martin,Several Complex Variables, Princeton Univ. Press, Princeton, 1948.MATHGoogle Scholar
  4. 4.
    T. Carleman,Zur Theorie der linearen Integralgleichungen, Math. Z.9 (1921), 196–217.CrossRefMathSciNetGoogle Scholar
  5. 5.
    H. Cartan,Variétés analytiques-réelles et variétés analytiques-complexes, Bull. Soc. Math. France85 (1957), 77–100.MATHMathSciNetGoogle Scholar
  6. 6.
    A. P. Cracknell and K. C. Wong,The Fermi Surface, Clarendon Press, Oxford, 1973.Google Scholar
  7. 7.
    M. S. P. Eastham,The Schrödinger equation with a periodic potential, Proc. Roy. Soc. Edinburgh69A (1971), 125–131.MathSciNetGoogle Scholar
  8. 8.
    M. S. P. Eastham,The Spectral Theory of Periodic Differential Equations, Scottish Academic Press, Edinburgh, 1973.MATHGoogle Scholar
  9. 9.
    I. M. Gelfand,Expansion in series of eigenfunctions of an equation with periodic coefficients, Dokl. Akad. Nauk SSSR73 (1950), 1117–1120.Google Scholar
  10. 10.
    E. Goursat,A Course in Mathematical Analysis, V. III Part 2, Dover Publications, Inc., New York, 1964.Google Scholar
  11. 11.
    E. Hille and R. S. Phillips,Functional Analysis and Semi-groups, AMS Colloquium Publications V. 31, Providence, 1957.Google Scholar
  12. 12.
    T. Kato,Perturbation Theory for Linear Operators, Springer, New York, 1966.MATHGoogle Scholar
  13. 13.
    J. L. Lions and E. Magenes,Non-Homogeneous Boundary Value Problems and Applications I, Springer, New York, 1972.MATHGoogle Scholar
  14. 14.
    S. G. Mikhlin,Integral Equations, 2nd revised ed., Pergamon Press, Oxford, 1964.MATHGoogle Scholar
  15. 15.
    F. Odeh and J. B. Keller,Partial differential equations with periodic coefficients and Bloch waves in crystals, J. Math. Phys.5 (1964), 1499–1504.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    F. Rellich,Ein Satz über mittlere Konvergenz, Gött. Nachr. (math. phys.) (1930), 30–35.Google Scholar
  17. 17.
    R. Sikorski,The determinant theory in Banach spaces, Colloq. Math.8 (1961), 141–198.MATHMathSciNetGoogle Scholar
  18. 18.
    R. Sikorski,On the Carleman determinants, Studia Math.20 (1961), 327–346.MATHMathSciNetGoogle Scholar
  19. 19.
    F. Smithies,The Fredholm theory of integral equations, Duke Math. J.8 (1941), 107–130.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    L. E. Thomas,Time dependent approach to scattering from impurities in a crystal, Comm. Math. Phys.33 (1973), 335–343.CrossRefMathSciNetGoogle Scholar
  21. 21.
    E. C. Titchmarsh,Eigenfunction Expansions Part II, Clarendon Press, Oxford, 1958.Google Scholar
  22. 22.
    H. Whitney,Elementary structure of real algebraic varieties. Ann. of Math.66 (1957), 545–556.CrossRefMathSciNetGoogle Scholar
  23. 23.
    H. Whitney and F. Bruhat,Quelques propriétés fondamentales des ensembles analytiques-réels, Comm. Math. Helvetici33 (1959), 132–160.CrossRefMathSciNetGoogle Scholar
  24. 24.
    C. H. Wilcox,Uniform asymptotic estimates for wave packets in the quantum theory of scattering, J. Math. Phys.6 (1965), 611–620.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    C. H. Wilcox,Measurable eigenvectors for Hermitian matrix-valued polynomials, J. Math. Anal. Appl.40 (1972), 12–19.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    J. M. Ziman,Principles of the Theory of Solids, 2nd ed., Cambridge Univ. Press, 1972.Google Scholar

Copyright information

© Hebrew University of Jerusalem 1978

Authors and Affiliations

  • Calvin H. Wilcox
    • 1
  1. 1.Department of MathematicsThe University of UtahSalt Lake CityUSA

Personalised recommendations