Journal d’Analyse Mathématique

, Volume 40, Issue 1, pp 90–128 | Cite as

Analytic matrix functions with prescribed local data

  • I. Gohberg
  • L. Rodman


Matrix Function Matrix Polynomial Singular Part Jordan Block Laurent Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Barnett,Introduction to Mathematical Control Theory, Clarendon Press, Oxford, 1975.zbMATHGoogle Scholar
  2. 2.
    F. R. Gantmacher,The Theory of Matrices, Vol. I, Chelsea, New York, 1959.zbMATHGoogle Scholar
  3. 3.
    I. Gohberg,On some problems in the spectral theory of finite-meromorphic operator functions, Izv. Akad. Nauk Armenian SSR,VI (1971), 160–181 (Russian).Google Scholar
  4. 4.
    I. Gohberg, M. A. Kaashoek, L. Lerer and L. Rodman,Common multiples and common divisors of matrix polynomials, I. Spectral method, Indiana Math. J.30 (1981), 321–356.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    I. Gohberg, M. A. Kaashoek and L. Rodman,Spectral analysis of families of operator polynomials and a generalized Vandermonde matrix, I. The finite dimensional case, inTopics in Functional Analysis (I. Gohberg and M. Kac, eds.), Academic Press, 1978, pp. 91–128.Google Scholar
  6. 6.
    I. Gohberg, P. Lancaster and L. Rodman,Spectral analysis of matrix polynomials, I. Canonical forms and divisors, Linear Algebra Appl.20 (1978), 1–44.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    I. Gohberg, P. Lancaster and L. Rodman,Spectral analysis of matrix polynomials, II. The resolvent form and spectral divisors, Linear Algebra Appl.21 (1978), 65–88.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    I. Gohberg and J. Leiterer,On holomorphic vector functions of one variable, II. Functions in a domain, Mat. Issled. Kishinev,VIII: 1(27) (1973), 37–58 (Russian).MathSciNetGoogle Scholar
  9. 9.
    I. Gohberg, L. Lerer and L. Rodman,Stable factorization of operator polynomials, I and II, J. Math. Anal. Appl.74 (1980), 401–431;75 (1980), 1–40.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    I. Gohberg and L. Rodman,On spectral analysis of nonmonic matrix and operator polynomials, I. Reduction to monic polynomials, Israel J. Math.30 (1978), 133–151.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    I. Gohberg and L. Rodman,On spectral analysis of nonmonic matrix and operator polynomials, II. Dependence of finite spectral data, Israel J. Math.30 (1978), 321–334.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    I. Gohberg and E. I. Sigal,On operator generalization of the logarithmic residue theorem and the theorem of Rouché, Math. USSR-Sb.13 (1971), 603–625.zbMATHCrossRefGoogle Scholar
  13. 13.
    H. Grauert,Analytische Faserungen über holomorphvollständigen Räumen, Math. Ann.135 (1958), 263–273.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    J. Leiterer,Local and global equivalence of meromorphic operator functions, Part II, Math. Nachr.84 (1978), 145–170.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    A. I. Markushevich,Theory of Functions of a Complex Variable, Vols. II, III, Prentice-Hall, Englewood Cliffs, N.J., 1965.Google Scholar
  16. 16.
    L. Rodman,Spectral Theory of Analytic Matrix Functions, Ph.D. Thesis, Tel Aviv University, Israel, 1978.Google Scholar
  17. 17.
    W. Rudin,Real and Complex Analysis, second edition, McGraw-Hill, 1974.Google Scholar
  18. 18.
    Yu. L. Shmuljan,Finite dimensional operators depending analytically on a parameter, Ukrainian Math. J.IX(2), (1957), 195–204 (Russian).CrossRefGoogle Scholar

Copyright information

© The Weizmann Science Press of Israel 1981

Authors and Affiliations

  • I. Gohberg
    • 1
    • 2
  • L. Rodman
    • 1
    • 2
  1. 1.Department of MathematicsTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Pure MathematicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations