Biological Trace Element Research

, Volume 46, Issue 1–2, pp 91–102 | Cite as

The uptake of Na-selenite in rat brain

Localization of new glutathione peroxidases in the rat brain
  • Kaixun Huang
  • Erling Lauridsen
  • Jørgen Clausen


Polyunsaturated fatty acids (PUFAs) occur in phospholipids of synapses of central nervous system (CNS). PUFAs may thus determine the fluidity of synaptosomal membranes and regulate neuronal transmission. It was therefore tempting to suggest an oxidative system in CNS protecting the membrane function, e.g., glutathione peroxidase (GSH-Px). In order to trace GSH-Px Wistar rats were loaded with 4800 kBq of75Se sodium selenite. By means of gradient ultracentrifugation, particulate fractions of CNS were isolated and radioactivity as well as selenium dependent GSH-Px were estimated.

The following data were obtained:
  1. 1.

    All fractions (myelin, synaptic vesicles, synaptosomes, mitochondria, and microsomes) contained75Se.

  2. 2.

    After acetone precipitation of GSH-Px activity, fractionation on Sephadex G-150 revealed in all particulate fractions at least two peaks of radioactivity with GSH-Px activity.

  3. 3.

    The two GSH-Px peaks from the Sephadex filtration were freeze dried and applied on a hydrophobic T-gel column and eluted with decreasing molarity of ammonium sulfate from 1.5 to 0.05M. The first Sephadex peak with GSH-Px activity from myelin and the second peak with GSH-Px activity from synaptic vesicles could now be resolved into two different fractions of radioactivity on the T-gel. The remaining Sephadex G-150 peaks could only be resolved into one peak of radioactivity.

  4. 4.

    SDS-polyacrylamide gel electrophoresis of the T-gel peaks from all fractions showed a protein band with a mobility identical with that of human erythrocyte GSH-Px. The T-gel elution of myelin, synaptic vesicles and mitochondria gave rise to nearly pure CNS GSH-Px activity.


The data presented support the idea that CNS fractions have membrane bound GSH-Px activity that may function as protecting enzymes towards oxidative stress in the brain.

Index Entries

Central nervous system selenium rat brain 



Central nervous system


glutathione peroxidase (EC


polyunsaturated fatty acids


radioactive sodium selenite


reduced glutathione


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Michelson, J. M. McCord, and I. Fridovich,Superoxide and Superoxide Dismutase, Academic, New York (1977).Google Scholar
  2. 2.
    J. Clausen,Acta Neurol. Scand. 70, 345 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Miquel, J. Oro, K. G. Bensch, and J. E. Johnson, inFree Radicals in Biology, W. A. Pryer, ed., New York, Academic, (1977).Google Scholar
  4. 4.
    D. E. Eddy and D. Haman,J. Am. Ger. Soc. 25, 220 (1977).Google Scholar
  5. 5.
    G. N. Schrauzer and D. A. White,Bioinorg. Chem. 8, 303–318 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Clausen, S. A. Nielsen, and M. Kristensen,Biol. Trace Elem. Res. 20, 135–151, (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Tolonen, S. Sarna, M. Halme, S. E. J. Tuominen, T. Westermarck, U.-R. Nordberg, M. Keinonen and J. Schrijver,Biol. Trace Elem. Res. 17, 221–228 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Clausen and S. A. Nielsen,Biol. Trace Elem. Res. 15, 122–135, 1988.Google Scholar
  9. 9.
    E. DeRobertis, A. Pelegrino de Iraldi, G. Rodrigez de Lores-Arnais, and L. Salganicoff,J. Neurochem. 9, 23–35 (1962).CrossRefGoogle Scholar
  10. 10.
    B. Formby and J. Clausen,Hoppe-Seyler’ Z. Physiol. Chem. 349, 349–356 (1968).Google Scholar
  11. 11.
    J. Clausen,Biol. Trace Elem. Res. 28, 39–45 (1991).PubMedCrossRefGoogle Scholar
  12. 12.
    J. Porath, F. Kaisano, and M. Pelew,FEBS Lett. 185, 306–310 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    O. H. Lowry, N. J. Roseboubrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193, 265 (1951).PubMedGoogle Scholar
  14. 14.
    U. K., Laemmli,Nature 227, 680–685 (1970).PubMedCrossRefGoogle Scholar
  15. 15.
    R. E. Anderson, D. J. Landis, and P. A. Dudley,Invest. Ophthal. Mol. 15, 232 (1976).Google Scholar
  16. 16.
    R. E. Anderson and L. Sperling,Arch. Biochem. Biophys. 144, 673 (1971).PubMedCrossRefGoogle Scholar
  17. 17.
    D. Harman, D. E. Eddy, and J. Seibold,J. Am. Geriat. Soc. 24, 301–307 (1976).PubMedGoogle Scholar
  18. 18.
    G. E. Jensen and J. Clausen,Ann Nutr. Metab. 25, 27–37 (1981).PubMedGoogle Scholar
  19. 19.
    G. E. Jensen and J. Clausen,Lipids 16, 137–141 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    G. E. Jensen, V. K. S. Shukla, G. Gissel-Nielsen, and J. Clausen,Scand. J. Clin. Lab. Invest. 38, 309–318 (1978).PubMedCrossRefGoogle Scholar
  21. 21.
    J. J. Zakowski and A. L. Tappel,Biochim. Biophys. Acta 526, 65–76 (1978).PubMedGoogle Scholar
  22. 22.
    R. Schukelt, R. Brigelius-Flohè, M. Majorino, A. Roveri, J. Reumkens, W. Strassburger, F. Ursini, B. Wolf, and L. Flohè,Free Rad. Res. Commun. 14, 343–361 (1991).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • Kaixun Huang
    • 1
  • Erling Lauridsen
    • 2
  • Jørgen Clausen
    • 2
  1. 1.Department of ChemistryHuazhong University of Science and TechnologyWuhanP. R. China
  2. 2.The Institute for Life Sciences and ChemistryUniversity of RoskildeDenmark

Personalised recommendations