Advertisement

Lipid peroxidation in rats administrated with mercuric chloride

  • Y. L. Huang
  • S. L. Cheng
  • T. H. Lin
Original Articles

Abstract

Parenteral administration of mercuric chloride (HgCl2) to rats enhanced lipid peroxidation in liver, kidney, lung, testis, and serum (but not in heart, spleen, or muscle), as measured by the thiobarbituric acid reaction for malondialdehyde (MDA) in fresh tissue homogenates and body fluids. After sc injection of HgCl2 (5 mg/kg body wt), MDA concentrations in liver and kidney became significantly increased by 9 h and reached peak values at 24 h. Dose-response studies were carried out with male albino rats of the Fisher-344 strain (body wt 170–280 g) injected with 1, 3, 5 mg Hg/kg as HgCl2 and sacrificed after 24 h. In time-response studies, animals were administered 5 mg Hg/kg as HgCl2 and sacrificed after 3, 9, 18, 24, and 48 h. Studies in the authors' laboratory have shown that (1) concentrations of MDA are increased in targets (liver, kidney, lung, and testis) of HgCl2-treated rats; (2) severity of hepatotoxicity and nephrotoxicity is generally consistent with the elevation of Hg and MDA concentrations, based upon the time-course and dose-effect relationships observed after administration of HgCl2 to rats; and (3) concentrations of MDA are reduced in target tissues after pretreatment with antioxidants and chelators to HgCl2-treated rats. The results of this study implicate that the lipid peroxidation is one of the molecular mechanisms for cell injury in acute HgCl2 poisoning.

Index Entries

Mercuric chloride lipid peroxidation malondialdehyde thiobarbituric acid antioxidant chelator 

References

  1. 1.
    F. W. Sunderman Jr.,Acta Pharmacol. Toxicol. 59 (suppl. 7), 248–255 (1986).Google Scholar
  2. 2.
    J. M. C. Gutteridge and B. Halliwell,Trends Biochem. Sci. 15, 129–135 (1990).PubMedCrossRefGoogle Scholar
  3. 3.
    S. H. Y. Wong, J. A. Knight, S. M. Hopfer, O. Zaharia, C. N. Leach Jr., and F. W. Sunderman Jr.,Clin. Chem. 33, 214–220 (1987).PubMedGoogle Scholar
  4. 4.
    B. Halliwell and J. M. C. Gutteridge,Biochem. J. 219, 1–14 (1984).PubMedGoogle Scholar
  5. 5.
    B. Halliwell and J. M. C. Gutteridge,Molec. Aspects Med. 8, 89–193 (1985).CrossRefGoogle Scholar
  6. 6.
    M. Younes and C. P. Siegers,Biochem. Pharmacol. 33, 2001–2003 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    N. Sugawara and C. Sugawara,J. Appl. Biochem. 6, 199–204 (1984).PubMedGoogle Scholar
  8. 8.
    Y. Yamane, H. Fukino, and M. Imagawa,Chem. Pharm. Bull. 25, 1509–1518 (1977).PubMedGoogle Scholar
  9. 9.
    A. Rothstein,Fed. Proc. 18, 1029–1038 (1959).Google Scholar
  10. 10.
    B. L. Vallee and D. D. Ulmer,Annu. Rev. Biochem. 41, 91–128 (1972).PubMedCrossRefGoogle Scholar
  11. 11.
    H. Fukino, M. Hirai, Y. M. Hsueh, and Y. Yamane,Toxicol. Appl. Pharmacol. 73, 395–401 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Yonaha, E. Itoh, Y. Ohbayashi, and M. Uchiyama,Res. Commun. Chem. Pathol. Pharmacol. 28, 105–112 (1980).PubMedGoogle Scholar
  13. 13.
    R. C. Zalme, E. M. McDowell, R. B. Nagle, J. S. McNell, W. Flamenbaum, and B. F. Tramp,Arch. B. Cell Pathol. 22, 197–216 (1976).Google Scholar
  14. 14.
    W. B. Kinter and J. B. Pritchard, Altered permeability of cell membranes, inHandbook of Physiology, Reactions to Environmental Agents, D. H. K. Lee, H. L. Falk, S. D. Murphy, and S. R. Geiger, eds., Williams & Wilkins, Baltimore, Section 9, pp. 563–576 (1977).Google Scholar
  15. 15.
    M. Yonaha, Y. Ohbayashi, T. Ichinose, and M. Sagai,Chem. Pharm. Bull. 30, 1437–1443 (1982).PubMedGoogle Scholar
  16. 16.
    N. H. Stacey and H. Kappus,Toxicol. Appl. Pharmacol. 63, 29–35 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    F. W. Sunderman Jr., A. Marzouk, S. M. Hopfer, O. Zaharia, and M. C. Reid,Ann. Clin. Lab. Sci. 15, 229–236 (1985).PubMedGoogle Scholar
  18. 18.
    J. J. Doughery and W. G. Hoekstra,Proc. Soc. Exp. Biol. Med. 169, 201–208 (1982).Google Scholar
  19. 19.
    O. A. Levander, V. C. Morris, and R. J. Ferretti,J. Nutri. 107, 363–372 (1977).Google Scholar
  20. 20.
    C. H. Gallagher,Austral. J. Exp. Biol. 40, 241–250 (1962).PubMedCrossRefGoogle Scholar
  21. 21.
    J. B. Nielsen, H. R. Andersen, and O. Andersen,J. Toxicol. Environ. Health. 34, 469–483 (1991).PubMedCrossRefGoogle Scholar
  22. 22.
    W. C. Sin, M. K. Wong, and Y. M. Sin,Bull. Environ. Contam. Toxicol. 42, 942–948 (1989).PubMedCrossRefGoogle Scholar
  23. 23.
    K. N. Kee and Y. M. Sin,Bull. Environ. Contam. Toxicol. 48, 509–514 (1992).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Comporti,Lab. Invest. 53, 599–623 (1985).PubMedGoogle Scholar
  25. 25.
    S. V. S. Rana and P. R. Boora,Bull. Environ. Contam. Toxicol. 48, 120–124 (1992).PubMedCrossRefGoogle Scholar
  26. 26.
    S. M. Lin, C. H. Chiang, C. L. Tseng, and M. H. Yang,Radiochem. Radioanal. Letters 56, 261–272 (1983).Google Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Y. L. Huang
    • 1
  • S. L. Cheng
    • 1
  • T. H. Lin
    • 1
  1. 1.School of Technology for Medical SciencesKaohsiung Medical CollegeKaohsiungTaiwan R.O.C.

Personalised recommendations