Biological Trace Element Research

, Volume 50, Issue 2, pp 109–117 | Cite as

The effect of the acrodermatitis enteropathica mutation on zinc uptake in human fibroblasts

  • Florence Vazquez
  • Arthur Grider
Article

Abstract

The acrodermatitis enteropathica (AE) mutation affects intestinal zinc absorption. Our goal was to determine whether the AE mutation affects zinc uptake in human fibroblasts. Zinc uptake was determined during initial rates of uptake (10 min) following incubation in HEPES/saline buffer. Zinc uptake (from 0.25 to 1 μM) into normal fibroblasts was significantly greater than into the AE fibroblasts (p<0.05). In order to identify factors that may alter cellular zinc uptake and be affected by the AE mutation, zinc uptake in the presence of albumin or bicarbonate was measured. Albumin restricted zinc uptake in both normal and AE fibroblasts, whereas bicarbonate stimulated zinc uptake in the normal fibroblasts. The effect of bicarbonate on zinc uptake in the AE fibroblasts was significantly reduced in both the Pronase-sensitive and Pronase-resistant compartments. Following loading of the fibroblasts with 1 μM zinc for 60 min, zinc efflux and retention were measured. The AE mutation did not affect zinc retention compared to normal fibroblasts. We conclude that the AE mutation affects both zinc binding to the cell surface and its translocation across the plasma membrane into the cell, possibly mediated through a defective anionic exchange mechanism.

Index Entries

Transmembrane zinc transport cellular zinc uptake human fibroblast acrodermatitis enteropathica albumin bicarbonate anion exchange 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Danbolt, and K. Closs,Acta Derms. Venereol. 23, 127, (1942).Google Scholar
  2. 2.
    C. J. Dillaha, A. L. Lorincz, and O. R. Aavik,J. Am. Med. Assoc. 152, 509, (1953).PubMedGoogle Scholar
  3. 3.
    K. H. Neldner and K. M. Hambidge,N. Engl. J. Med. 292, 879, (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    P. Olholm-Larsen,Hum. Genet. 46, 65, (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    J. P. Van Wouwe,Eur. J. Pediatr. 149, 2 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Garrets and M. Molokhia,J. Pediatr. 91, 492 (1977).CrossRefGoogle Scholar
  7. 7.
    D. Mack, B. Koletzko, S. Cunnane, E. Cutz, and A. Griffiths,Gut 30, 1426 (1989).PubMedCrossRefGoogle Scholar
  8. 8.
    T. D. Bohane, E. Cutz, J. R. Hamilton, and D. G. Gall,Gastroenterol. 73, 587 (1977).Google Scholar
  9. 9.
    D. J. Atherton, D. P. R. Muller, P. J. Aggett, and J. T. Harries,Clin. Sci. 56, 505 (1979).PubMedGoogle Scholar
  10. 10.
    N. T. Davies,Br. J. Nutr. 43, 189 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    L. Steel and R. J. Cousins,Am. J. Physiol. 248, G46 (1985).PubMedGoogle Scholar
  12. 12.
    G. W. Evans and P. E. Johnson,Lancet 1, 52 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    I. Kreiger, R. Cash, and G. W. Evans,J. Pediatr. Gastroenterol. Nutr. 3, 62 (1984).CrossRefGoogle Scholar
  14. 14.
    C. E. Casey, K. M. Hambidge, and P. A. Walravens,J. Pediatr. 95, 1008 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    S. C. Cunnane and I. Krieger,J. Am. Coll. Nutr. 7, 249 (1988).PubMedGoogle Scholar
  16. 16.
    M. L. Ackland, D. M. Danks, and H. J. McArdle,Biol. Trace Element Res. 22, 257 (1989).CrossRefGoogle Scholar
  17. 17.
    O. H. Lowry, N. J. Rosebrough, A. L., Farr and R. J. Randall,J. Biol. Chem. 193, 265 (1951).PubMedGoogle Scholar
  18. 18.
    M. L. Ackland and H. J. McArdle,J. Cell. Physiol,145, 409 (1990).PubMedCrossRefGoogle Scholar
  19. 19.
    J. O. A. Torrubia and R. Garay,J. Cell. Physiol. 138, 316, (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    V. Kalfakakou and T. J. B. Simons,J. Physiol. 421, 485 (1990).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • Florence Vazquez
    • 1
  • Arthur Grider
    • 1
  1. 1.Division of Nutritional SciencesThe University of TexasAustin

Personalised recommendations