Biological Trace Element Research

, Volume 48, Issue 3, pp 263–274 | Cite as

Trace element concentration and arsenic speciation in the well water of a Taiwan area with endemic Blackfoot disease

  • S. L. Chen
  • S. J. Yeh
  • M. H. Yang
  • T. H. Lin
Original Articles


Blackfoot disease is a peripheral vascular disease resulting in gangrene of the lower extremities. Although extensive epidemiological study has implicated high arsenic content in artesian well water in the endemic area, there is more to learn about the etiology of the disease. In this study, effort is paid on multielement determination and arsenic speciation in order to find out whether the trace element concentration pattern in well water in the Blackfoot disease endemic area is different from those of two control areas. Experimental results indicate that the concentrations of Fe, P, Na, and Ba in well water in the Blackfoot disease endemic area are found to be significantly higher than those of the controls, but they are still below the drinking water standard. The total arsenic in well water in the endemic area (671±149 ppb) is much higher than that of one normal control area of Hsin-Chu (<0.7 ppb), but is a similar level as that of other control areas of I-Lan (653±71 ppb) where no Blackfoot disease has ever been found. It was also found that the insoluble arsenic in the endemic area (21.9 ppb) is much higher than that in two control areas (≤1.8 ppb), and the concentration ratio between As(III) and As(V) species in the endemic area (2.6) is much lower than that in one of the control areas, where the total arsenic is also high (14.7). The possible connection of Blackfoot disease with trace elements, arsenic species, and possibly other as yet undefined environmental factors in the artesian well water, is discussed.

Index Entries

Trace elements arsenic speciation Blackfoot disease artesian well water insoluble arsenic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. P. Tseng, H. M. Chu, S. W. How, J. M. Fong, C. S. Lin and S. Yeh,J. Natl. Cancer Inst. 40, 453 (1968).PubMedGoogle Scholar
  2. 2.
    S. Yeh and S. W. How, Reports. Institute of Pathology, National Taiwan University14, 25 (1963).Google Scholar
  3. 3.
    K. P. Chen and H. Y. Wu,J. Formosan Med. Assoc. 61, 611 (1962).Google Scholar
  4. 4.
    K. P. Chen and H. Y. Wu, Memoirs, College of Med. National Taiwan University8, 115 (1962).Google Scholar
  5. 5.
    K. P. Chen and H. Y. Wu,J. Formosan Med. Assoc. 68, 291 (1969).Google Scholar
  6. 6.
    S. Yeh,Human Pathol. 4, 469 (1973).CrossRefGoogle Scholar
  7. 7.
    F. J. Lu,Natl. Sci. Council Monthly 6, 388 (1978).Google Scholar
  8. 8.
    H. S. Yu, H. M. Sheu, S. S. Ko, L. C. Chiang, C. H. Chien, S. M. Lin, B. R. Tserng, and C. S. Chen,Int. J. Derm. 23, 258 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    W. Y. Chen and W. P. Lien,J. Formosan Med. Assoc. 62, 60 (1963).Google Scholar
  10. 10.
    F. J. Lu and T. M. Liu,J. Formosan Med. Assoc. 85, 352 (1986).Google Scholar
  11. 11.
    S. Yeh,J. Natl. Cancer Inst. 10, 81 (1963).Google Scholar
  12. 12.
    C. J. Chen, Y. C. Chuang, T. M. Lin, and H. Y. Wu,Cancer Res. 45, 5895 (1985).PubMedGoogle Scholar
  13. 13.
    W. R. Cullen and K. J. Reimer,Chem. Rev. 89, 713 (1989).CrossRefGoogle Scholar
  14. 14.
    V. Cheam and H. Agemian,Analyst 105, 737 (1980).CrossRefGoogle Scholar
  15. 15.
    J. K. Taylor,Quality Assurance of Chemical Measurements, Lewis Publishers, 4th printing (1988).Google Scholar
  16. 16.
    J. M. Borgono, P. Vicent, H. Venturino, and A. Infante,Environ. Health Perspect. 19, 103 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    R. Zaldivar,Beitr. Pathol. Bd. 151, 384 (1974).Google Scholar
  18. 18.
    W. P. TsengEnviron. Health Perspect. 19, 109 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    W. Morton, G. Stair, D. Pohl, J. Stoner, S. Wagner, and P. Weswig,Cancer 37, 2523 (1976).PubMedCrossRefGoogle Scholar
  20. 20.
    J. M. Harrington, J. P. Middaugh, D. L. Morse, and J. HouseworthAm. J. Epidemiol. 108, 377 (1978).PubMedGoogle Scholar
  21. 21.
    J. W. Southwick, A. E. Western, T. Whitley, and R. Isaacs, Community health associated with arsenic in drinking water in Midland county, Utah. Final Report. EPA 600/1-81-064, Cincinnati, OH: US. EPA, Health Effects Research Laboratory, 7499 (1981).Google Scholar
  22. 22.
    Safe Drinking, Water Committee, inDrinking Water and Health. National Academy Press, Washington DC. vol. 5, 118 (1983).Google Scholar
  23. 23.
    F. J. Lu, Y. Yamamura and H. Yamauchi,J. Formosan Med. Assoc. 87, 65 (1985).Google Scholar
  24. 24.
    Y. Tanizaki, T. Shimokawa, and M. Yamazaki,Wat. Res. 26, 55 (1992).CrossRefGoogle Scholar
  25. 25.
    J. P. L. Dearlove, G. Longworth, M. Iranorich, J. I. Kim, B. Delakowitz, and P. Zeh,Radiochim. Acta. 52/53 83 (1991).Google Scholar
  26. 26.
    M. W. Mok, N. K. Shah, and C. M. Wai,Anal. Chem. 58, 110 (1986).CrossRefGoogle Scholar
  27. 27.
    M. O. Andreae.,Anal. Chem. 49, 820 (1977).PubMedCrossRefGoogle Scholar
  28. 28.
    S. Tanaka, M. Nakamura, Y. Kishi, and Y. HashimotoNippon Kagaku Kaishi 727 (1986).Google Scholar
  29. 29.
    F. J. Lu, H. P. Hsieh, H. Yamauchi, and Y. Yamamura,Appl. Organomet. Chem. 5, 507 (1991).CrossRefGoogle Scholar
  30. 30.
    F. J. Lu and Y. S. Lee,Sci. Tot. Environ. 114, 135 (1992).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • S. L. Chen
    • 1
  • S. J. Yeh
    • 1
  • M. H. Yang
    • 1
  • T. H. Lin
    • 2
  1. 1.Institute of Nuclear ScienceNational Tsing Hua UniversityHsinchuTaiwan, ROC
  2. 2.School of Technology for Medical SciencesKaohsiung Medical CollegeKaohsiungTaiwan

Personalised recommendations