Journal d’Analyse Mathematique

, Volume 55, Issue 1, pp 271–286

Movement of hot spots in Riemannian manifolds

  • Isaac Chavel
  • Leon Karp


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Aharonov, M. M. Schiffer and L. Zalcman,Potato kugel, Isr. J. Math.40 (1981), 331–339.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    G. Alessandrini,Matzoh ball soup: A symmetry result for the heat equation, J. Analyse Math.54 (1990), 229–236.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    I. Chavel,Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984.MATHGoogle Scholar
  4. 4.
    J. Cheeger and S. T. Yau,A lower bound for the heat kernel, Commun. Pure Appl. Math.34 (1981), 465–480.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. Dodziuk,Maximum principle for parabolic inequalities and heat on open manifolds, Indiana Univ. Math. J.32 (1983), 703–716.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    D. B. A. Epstein and A. Marden,Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated Riemann surfaces, inAnalytic and Geometric Aspects of Hyperbolic Space, D. B. A. Epstein, ed., Cambridge University Press, Cambridge, 1987, pp. 113–253.Google Scholar
  7. 7.
    P. Hsu,Heat semigroup on a complete Riemannian manifold, preprint.Google Scholar
  8. 8.
    M. S. Klamkin,A physical characterization of a sphere (Problem 64–5*), SIAM Rev.6 (1964), 61.CrossRefGoogle Scholar
  9. 9.
    S. Kobayashi and K. Nomizu,Foundations of Differential Geometry, Vol. II, Interscience Publishers, New York, 1969.MATHGoogle Scholar
  10. 10.
    P. Li and S. T. Yau,On the parabolic kernel of the Schrödinger operator, Acta Math.156 (1986), 153–201.CrossRefMathSciNetGoogle Scholar
  11. 11.
    J. Rauch,An introduction to the qualitative theory of partial differential equations, inPartial Differential Equations and Related Topics, Lecture Notes in Math.446, Springer-Verlag, Berlin, 1975, pp. 355–369.CrossRefGoogle Scholar
  12. 12.
    S. T. Yau,On the heat kernel of a complete Riemannian manifold, J. Math. Pures Appl.57 (1978), 191–201.MATHMathSciNetGoogle Scholar
  13. 13.
    L. Zalcman,Some inverse problems of potential theory, Contemporary Math.63, Providence, R.I., Am. Math. Soc., 1987, pp. 337–350.MathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1990

Authors and Affiliations

  • Isaac Chavel
    • 1
  • Leon Karp
    • 2
  1. 1.Department of MathematicsThe City College of the City University of New YorkNew YorkUSA
  2. 2.Department of MathematicsLehman College of the City University of New YorkBronxUSA

Personalised recommendations