Explicit realization of a metaplectic representation
Article
- 107 Downloads
- 7 Citations
Keywords
Parabolic Subgroup Maximal Parabolic Subgroup Explicit Realization Irreducible Constituent Composition Theorem
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [BZ1]I. Bernstein and A. Zelevinsky,Representations of the group GL(n, F)where F is a non-archimedean local field, Russ. Math. Surv.31 (1976), 1–68.zbMATHCrossRefGoogle Scholar
- [BZ2]I. Bernstein and A. Zelevinski,Induced representations of reductive groups I, Ann. Sci. Ec. Norm. Super.10 (1977), 441–472.zbMATHGoogle Scholar
- [C]W. Casselman,Characters and Jacquet modules, Math. Ann.230 (1977), 101–105.CrossRefMathSciNetGoogle Scholar
- [F]Y. Flicker,Automorphic forms on covering groups of GL(2), Invent. Math.57 (1980), 119–182.zbMATHCrossRefMathSciNetGoogle Scholar
- [F1]Y. Flicker,Explicit realization of a higher metaplectic representation, Indag. Math. (1990), to appear.Google Scholar
- [FK1]Y. Flicker and D. Kazhdan,Metaplectic correspondence, Publ. Math. IHES64 (1987), 53–110.Google Scholar
- [FK2]Y. Flicker and D. Kazhdan,On the symmetric square: Unstable local transfer, Invent. Math.91 (1988), 493–504.zbMATHCrossRefMathSciNetGoogle Scholar
- [FM]Y. Flicker and J. G. M. Mars,Summation formulae, automorphic realizations and a special value of Eisenstein series, J. Number Theory (1990), to appear.Google Scholar
- [HM]R. Howe and C. Moore,Asymptotic properties of unitary representations, J. Funct. Anal.32 (1979), 72–96.zbMATHCrossRefMathSciNetGoogle Scholar
- [K]A. Kirillov,Elements of the Theory of Representations, Grundlehren 220, Springer-Verlag, Berlin, 1976.Google Scholar
- [KP1]D. Kazhdan and S. J. Patterson,Metaplectic forms, Publ. Math. IHES59 (1984), 35–142.zbMATHMathSciNetGoogle Scholar
- [KP2]D. Kazhdan and S. J. Patterson,Towards a generalized Shimura correspondence, Adv. in Math.60 (1986), 161–234.zbMATHCrossRefMathSciNetGoogle Scholar
- [M]J. Milnor,An introduction to algebraic K-theory, Ann. Math. Stud.72 (1971).Google Scholar
- [T]P. Torasso, Quantification géométrique, opérateurs d’entrelacements et représentations unitaires de SL(3, R), Acta Math.150 (1983), 153–242; voir aussi:Quantification géométrique et représentations de SL3(R), C. R. Acad. Sci. Paris291 (1980), 185–188.CrossRefMathSciNetGoogle Scholar
- [W]A. Weil,Sur certains groupes d’opérateurs unitaires, Acta Math.111 (1964), 143–211.zbMATHCrossRefMathSciNetGoogle Scholar
Copyright information
© Hebrew University of Jerusalem 1990