Molecular Biotechnology

, 11:55 | Cite as

Mechanisms and assessment of lectin-mediated mitogenesis

Review

Abstract

The discovery of lectin-mediated mitogenesis by Nowell in 1960 stimulated interest in the properties of lectins while advancing knowledge of immunology. Although some lectins are polyclonal activators both in vitro and in vivo, others may display a broad range of activities toward human lymphocytes. Indeed, the same lectin (e.g. wheat germ agglutinin or Datura lectin ) may be mitogenic, comitogenic, or antimitogenic, depending on the experimental conditions. An individual lectin may bind to several glycoproteins on the lymphocyte surface, resulting in interactions that may or may not be functionally relevant, and that may have opposing effects. Studies with lectins and with monoclonal antibodies (MAbs) have established that a surprisingly large variety of cell-surface molecules can influence the initiation and regulation of lymphocyte activation and proliferation. Interactions between lymphocytes and accessory cells are crucial; some signals are cell-mediated, but others depend on soluble cytokines. Mitogenic lectins presumably bind to the T-cell receptor complex and also promote a positive costimulatory signal leading to the synthesis of interleukin 2 and interlcukin 2 receptors (IL-2R). Nonmitogenic. comitogenic, and antimitogenic lectin activities also probably act via accessory molecules involved in costimulation. Plant lectin-animal lymphocyte interactions presumably have no physiological significance, but it is suggested that the former mimics, microbial superantigens, which may function in the colonization of host cells. Mitogenic stimulation of lymphocytes can be assessed in several ways. The standard technique measures [3H]-thymidine incorporation into DNA. but nonradioactive procedures are also available.

Index Entries

Mitogenic lectins antimitogenic lectins accessory cells costimulation superantigens/[3H]-thymidine 

References

  1. 1.
    Nowell, P. (1960) Phytohemagglutinin: an initiator of mitosis in cultures of normal human leucocytes.Cancer Res. 20, 462–464.PubMedGoogle Scholar
  2. 2.
    Li, J. G. and Osgood, E. E. (1949) A method for the rapid separation of leukocytes and nucleated erythrocytes from blood or marrow with a phytohemagglutinin from red beans(Phaseolus vulgaris) Blood 4, 670–675.PubMedGoogle Scholar
  3. 3.
    Leeson, C. R. and Leeson, T. S. (1966)Histology. W. B. Saunders, Philadelphia.Google Scholar
  4. 4.
    Aub, J. C., Tieslau, C., and Lankester, A. (1963) Reaction of normal and tumour cell surfaces to enzymes I. Wheat germ lipase and associated mucopolysaccharides.Proc. Natl. Acad. Sci. USA 50, 613–619.PubMedCrossRefGoogle Scholar
  5. 5.
    Burger, M. M. and Goldberg, A. R. (1967) Identification of a tumor-specific determinant on neoplastic cell surfaces.Proc. Natl. Acad. Sci. USA 57, 359–366.PubMedCrossRefGoogle Scholar
  6. 6.
    Barker, B. E. (1969) Phytomitogens and lymphocyte blastogenesis.In Vitro 4, 64–79.CrossRefGoogle Scholar
  7. 7.
    Kilpatrick, D. C., Pusztai, A., Grant, G., Graham, C., and Ewen, S. W. B. (1985) Tomato lectin resists digestion in the mammalian alimentary canal and binds to intestinal villi without deleterious effects.FEBS Lett. 185, 299–305.PubMedCrossRefGoogle Scholar
  8. 8.
    Brady, P. G., Vannier, A. M., and Banwell, J. G. (1978) Identification of the dietary lectin, wheat germ agglutinin, in human intestinal contents.Gastroenterology 75, 236–239.PubMedGoogle Scholar
  9. 9.
    Freed, D. L. J. and Buckley, C. H. (1978) Mucotractive effect of lectin.Lancet 1, 585–586.PubMedCrossRefGoogle Scholar
  10. 10.
    Pusztai, A. (1991)Plant lectins. Cambridge University Press, Cambridge, England.Google Scholar
  11. 11.
    Lis, H. and Sharon, N. (1977) Lectins: their chemistry and application to immunology, inThe Antigens, vol.4, (Sela, M., ed.), Academic, New York, pp. 429–529.Google Scholar
  12. 12.
    Lis, H. and Sharon, N. (1986) Biological properties of lectins, inThe Lectins: Properties, Functions, and Applications in Biology and Medicine (Liener, I. E., Sharon, N., and Goldstein, I. J., eds.), Academic Press, London, pp. 265–291.Google Scholar
  13. 13.
    Kilpatrick, D. C. (1991) Lectin interactions with human leukocytes: mitogenicity, cell separation, clinical applications, inLectin Reviews, vol. 1 (Kilpatrick, D. C., Van Driessche, E., and BØg-Hansen, T.-C, eds.), Sigma Chemical Company, St. Louis, pp. 69–80.Google Scholar
  14. 14.
    Kilpatrick, D. C. (1995) Lectins in immunology, inLectins-Biomedical Perspectives (Pusztai, A. and Bardocz, S., eds.), Taylor and Francis, Basingstoke, pp. 155–182.Google Scholar
  15. 15.
    Greene, W. C. and Waldmann, T. A. (1980) Inhibition of human lymphocyte proliferation by the nonmitogenic lectin wheat germ agglutinin.J. Immunol. 124, 2979–2987.PubMedGoogle Scholar
  16. 16.
    Nachbar, M. S., Oppenheim, J. D., and Thomas, J. O. (1980) Lectins in the US diet. Isolation and characterization of a lectin from the tomato(Lycopersicon esculentum).J. Biol. Chem. 255, 2056–2063.PubMedGoogle Scholar
  17. 17.
    Greene, W. C., Fleisher, T. A., and Waldmann, T. A. (1981) Suppression of human T and B lymphocyte activation byAgaricus bisporus lectin.J. Immunol. 126, 580–586.PubMedGoogle Scholar
  18. 18.
    Kilpatrick, D. C., Graham, C., and Urbaniak, S. J. (1986) Inhibition of human lymphocyte transformation by tomato lectin.Scand. J. Immunol. 24, 11–19.PubMedCrossRefGoogle Scholar
  19. 19.
    Greene, W. C., Fleisher, T. A., and Waldmann, T. A. (1981) Soluble suppressor supernatants elaborated by concanavalin A-activated human mononuclear cells.J. Immunol. 126, 1185–1197.PubMedGoogle Scholar
  20. 20.
    Axelsson, B., Kimura, A., Hammarström, S., Wizzell, H., Nilsson, K., and Mellstedt, H. (1978) Helix pomatia A hemagglutinin: selectivity of binding to lymphocyte surface glycopeptides on T cells and certain B cells.Eur. J. Immunol. 8, 757–764.PubMedCrossRefGoogle Scholar
  21. 21.
    Trowbridge, I. S. (1994) CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development.Annu. Rev. Immunol. 12, 85–116.PubMedCrossRefGoogle Scholar
  22. 22.
    Yakura, H. (1994) The role of protein tyrosine phosphatases in lymphocyte activation and differentiation.Crit. Rev. Immunol. 14, 311–336.PubMedGoogle Scholar
  23. 23.
    Klaus, S. J., Sidorenko, S. P., and Clark, E. A. (1996). CD45 ligation induces programmed cell death in T and B lymphocytes.J. Immunol. 156, 2743–2753.PubMedGoogle Scholar
  24. 24.
    Park, J. K., Rosenstein, Y. J., Remold-O’Donnell, E., Bierer, B. E., Rosen, F. S., and Burakoff, S. J. (1991) Enhancement of T cell activation by the CD43 molecule whose expression is defective in WiskottAldrich syndrome.Nature 350, 706–709.PubMedCrossRefGoogle Scholar
  25. 25.
    Manjunath, N., Correa, M., Ardman, M., and Ardman, B. (1995). Negative regulation of T cell adhesion and activation by CD43.Nature 377, 535–538.PubMedCrossRefGoogle Scholar
  26. 26.
    Chilson, O. P., and Kelly-Chilson, A. E. (1989) Mitogenic lectins bind to the antigen receptor on human lymphocytes.Eur. J. Immunol. 19, 289–296.CrossRefGoogle Scholar
  27. 27.
    Brown, M. H., Cantrell, D. A., Brattsand, G., Crumpton, M. J., and Gullberg, M. (1989) The CD2 antigen associates with the T cell antigen receptor CD3 antigen complex on the surface of human T lymphocytes.Nature 339, 551–553.PubMedCrossRefGoogle Scholar
  28. 28.
    Suzuki, S., Kupsch, J., Eichmann, K., and Saizawa, M. K. (1992) Biochemical evidence of the physical association of the majority of CD3 δchains with the accessory/co-receptor molecules CD4 and CD8 on nonactivated T lymphocytes.Eur. J. Immunol. 22, 2475–2479.PubMedCrossRefGoogle Scholar
  29. 29.
    Osman, N., Ley, S. C., and Crumpton, M. J. (1992 Evidence for an association between the T cell receptor/CD3 antigen complex and the CD5 antigen in human lymphocytes.Eur. J. Immunol. 22, 2995–3000.PubMedCrossRefGoogle Scholar
  30. 30.
    Kilpatrick, D. C. and McCurrach, P. M. (1987) The wheat germ agglutinin is mitogenic, non-mitogenic and anti-mitogenic for human lymphocytes.Scand. J. Immunol. 25, 343–348.PubMedCrossRefGoogle Scholar
  31. 31.
    McCurrach, P. M. and Kilpatrick, D. C. (1988) Datura lectin is both an anti-mitogen and a co-mitogen acting synergistically with phorbol ester.Scand. J. Immunol. 27, 31–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Altman, A., Coggeshall, K. M., and Mustelin, T. (1990) Molecular events mediating T cell activation.Adv. Immunol. 48, 227–360.PubMedGoogle Scholar
  33. 33.
    Kilpatrick, D. C., Peumans, W. J., and Van Damme, E. J. M. (1990) Mitogenic activity of monocot lectins, inLectins—Biology, Biochemistry, Clinical Biochemistry, vol 7 (Kocourek, J., ed.), Sigma Chemical Co., St Louis, pp. 259–263.Google Scholar
  34. 34.
    Paul, W. E. and Seder, R.-A. (1994) Lymphocyte responses and cytokines.Cell 76, 241–251.PubMedCrossRefGoogle Scholar
  35. 35.
    Romagnani, S. (1995). Biology of human TH1 and TH2 cells.J. Clin. Immunol. 15, 121–129.PubMedCrossRefGoogle Scholar
  36. 36.
    Habu, S. and Raff, M. S. (1977) Accessory cell dependence of lectin-induced proliferation of mouse T lymphocytes.Eur. J. Immunol. 7, 451–457.PubMedCrossRefGoogle Scholar
  37. 37.
    Kilpatrick, D. C. (1988) Accessory cell paradox: monocytes enhance or inhibit lectin mediated human T lymphocyte proliferation depending on the choice of mitogen.Scand. J. Immunol. 28, 247–249.PubMedCrossRefGoogle Scholar
  38. 38.
    Gallagher, R. B., Whelan, A., and Feighery, C. (1986) Studies on the accessory requirement of T lymphocyte activation by concanavalin A.Clin. Exp. Immunol. 66, 118–125.PubMedGoogle Scholar
  39. 39.
    Grillon, C., Monsigny, M., and Kieda, C. (1991) Soluble human lymphocyte sugar binding proteins with immunosuppressive activity.Immunol. Lett. 28, 47–56.PubMedCrossRefGoogle Scholar
  40. 40.
    Meurer, S. C., Hussey, R. E., Fabbi, M., Fax, D., Acuto, O., Fitzgerald, K. A., et al. (1984) An alternative pathway of T-cell activation: a functional role for the 50 kd Tl 1 sheep erythrocyte receptor protein.Cell 36, 897–906.CrossRefGoogle Scholar
  41. 41.
    Yachie, A., Hernandez, D., and Blaese, R. M. (1987) T3-T cell receptor (Ti) complex—independent activation of T cells by wheat germ agglutinin.J. Immunol. 138, 2843–2847.PubMedGoogle Scholar
  42. 42.
    Boldt, D. H. and Armstrong, J. P. (1976) Rosette formation between human lymphocytes and sheep erythrocytes. Inhibition of rosette formation by specific glycopeptides.J. Clin. Invest. 57, 1068–1078.PubMedCrossRefGoogle Scholar
  43. 43.
    Selvaraj, P., Plunkett, M. L., Dustin, M., Sanders, M. E., Shaw, S., and Springer, T.-A. (1987) The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3.Nature 326, 400–402.PubMedCrossRefGoogle Scholar
  44. 44.
    Deckert, M., Kubar, J., Zoccola, D., Bernard-Pomier, G., Angelisova, P., Horejsi, V., and Bernard, A. (1992) CD59 molecule: a second ligand for CD2 in T cell adhesion.Eur. J. Immunol. 22, 2943–2947.PubMedCrossRefGoogle Scholar
  45. 45.
    Sandrin, M. S., Mouhtouris, E., Vaughan, H. A., Warren, H. S., and Parish, C. R. (1993) CD48 is a low affinity ligand for human CD2.J. Immunol. 451, 4606–4613.Google Scholar
  46. 46.
    Warren, H. S., Altin, J. G., Waldron, J. C., Kinnear, B. F., and Parish, C. R. (1996) A carbohydrate structure associated with CD 15 (Lewisx on myeloid cells is a novel ligand for human CD2.J. Immunol. 156, 2866–2873.PubMedGoogle Scholar
  47. 47.
    Meuer, S. C., Schraven, B., and Sanstag, Y. (1994) An “alternative” pathway of T cell activation.Int. Arch. Allergy Immunol.104, 216–221.PubMedCrossRefGoogle Scholar
  48. 48.
    Davis, S. J. and van derMerwe, P. A. (1996). The structure and ligand interactions of CD2: implications for T cell function. Immunol. Today17, 177–187.Google Scholar
  49. 49.
    Mollereau, B., Deckert, M., Deas, O., Rieux-Laucat, F., Hirsch, F., Bernard, A., et al. (1996). CD2-induced apoptosis in activated human peripheral T cells.J. Immunol. 156, 3184–3190.PubMedGoogle Scholar
  50. 50.
    Fournel, S. Robinet, E., Bonnefoy-Berard, N. Assossou, O. Flacher, M. Waldman, H., et al. (1998). A noncomitogenic CD2R monoclonal antibody induces apoptosis of activated T cells by a CD95/CD95Ldependent pathway.J. Immunol. 160, 4313–4321.PubMedGoogle Scholar
  51. 51.
    Ayroldi, E., Migliorati, G., Cannarile, L., Moraca, R., Delfino, D. V., and Riccardi, C. (1997). CD2 rescues T cells from T cell receptor/CD3 apoptosis: a role for the Fas/FasL system.Blood 89, 3717–3726.PubMedGoogle Scholar
  52. 52.
    Bell, G. M. and Imboden, J. B. (1995) CD2 and the regulation of T cell anergy.J. Immunol. 155, 2805–2807.PubMedGoogle Scholar
  53. 53.
    Sneller, M. C., Eisenstein, E. M., Baseler, M., Lane, H. C., Donoghue, E. T., and Falloon, J. (1994) A unique syndrome of immunodeficiency and autoimmunity associated with absent T cell CD2 expression. J. Clin. Immunol.14, 359–367.PubMedCrossRefGoogle Scholar
  54. 54.
    Guinan, E. C., Gribben, J. G., Boussiotis, V. A., Free-man, G. J., and Nadler, L. M. (1994) Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumour immunity.Blood 84, 3261–3282.PubMedGoogle Scholar
  55. 55.
    Krummel, M. F. and Allison, J. P. (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation.J. Exp. Med. 182, 459–465.PubMedCrossRefGoogle Scholar
  56. 56.
    Allison, J. P. and Krummel, M. F. (1995) The yin and yang of T cell costimulation.Science 270, 932–933.PubMedCrossRefGoogle Scholar
  57. 57.
    Blair, P. J., Riley, J. L., Levine, B. L., Lee, K. P., Craighead, N. Francomano,T., Perfetto, S. J., Gray, G. S., Carreno, B. M., and June, C. H. (1998). Cutting edge: CTLA-4 ligation delivers a unique signal to resting human CD4 T cells that inhibits interleukin-2 secretion but allows Bcl-XL induction.J. Immunol. 160, 12–15.PubMedGoogle Scholar
  58. 58.
    Liu, Y. (1997) Is CTLA-4 a negative regulator for T cell activation?Immunol. Today 18, 569–572.PubMedCrossRefGoogle Scholar
  59. 59.
    Torimoto, Y., Dang, N. H., Vivier, E., Tanaka, T., Schlossman, S. F., and Morimoto, C. (1991) Coassociation of CD26 (dipeptidyl peptidase N) with CD45 on the surface of human T lymphocytes.J. Immunol. 147, 2514–2517.PubMedGoogle Scholar
  60. 60.
    Kobata, T., Agernatsu, K., Kameoka, J., Schlossman, S. F., and Marimoto, C. (1994) CD27 is a signal-transducing molecule involved in CD45RA+ naive cell costimulation.J. Immunol. 153, 5422–5432.PubMedGoogle Scholar
  61. 61.
    Hintzen, R. Q., Lens, S. M. A., Lammers, K., Kuiper, H., Beckmann, M. P., and vonLier, R. A. W. (1995) Engagement of CD27 with its ligand CD70 provides a second signal for T cell activation.J. Immunol. 154, 2612–2623.PubMedGoogle Scholar
  62. 62.
    Pierres, A., Lipcey, C., Mawas, C., and Olive, D. (1992) A unique CD44 monoclonal antibody identifies a new T cell activation pathway.Eur. J. Immunol. 22, 413–417.PubMedCrossRefGoogle Scholar
  63. 63.
    Yamada, A., Nojima, Y., Sugita, K., Dang, N. H., Schlossman, S. F., and Morimoto, C. (1991) Crosslinking of VLA/CD29 molecule has a co-mitogenic effect with anti-CD3 on CD4 cell activation in serum-free culture system.Eur. J. Immunol. 21,,319–325.PubMedCrossRefGoogle Scholar
  64. 64.
    Cocks, B. G., Chang, C.-C. J., Carballido, J. M., Yssel, H., de Vries, J. E., and Avera, G. (1995). A novel receptor involved in T-cell activation.Nature (Lond.) 376, 260–263.CrossRefGoogle Scholar
  65. 65.
    Zanetta, J.-P., Wantyghem, J., Kuchler-Bopp, S., Badache, A., and Aubery, M. (1995) Human lymphocyte activation is associated with the early and high level expression of the endogenous lectin CSL at the cell surface.Biochem. J. 311, 629–636.PubMedGoogle Scholar
  66. 66.
    Levy, S., Todd, S. C., and Maecker, H. T. (1998) CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system.Annu. Rev. Immunol. 16, 89–109.PubMedCrossRefGoogle Scholar
  67. 67.
    Grewal, I. S. and Flavell, R. A. (1998) CD40 and CD154 in cell mediated immunity.Annu. Rev. Immunol. 16, 111–135.PubMedCrossRefGoogle Scholar
  68. 68.
    Kimura, A. and Ersson, B. (1981) Activation of T lymphocytes by lectins and carbohydrate-oxidising agents viewed as an immunological recognition of cell surface modifications seen in the context of self major histocompatibility complex antigens.Eur. J. Immunol. 11, 475–783.PubMedCrossRefGoogle Scholar
  69. 69.
    Hilgert, I., Horejsi, V., Angelisova, P., and Kristofova, H. (1980) Lentil lectin effectively induces allotransplantation tolerance in mice.Nature 284,,273–275.PubMedCrossRefGoogle Scholar
  70. 70.
    Drake, C. G. and Kotzin, B. L. (1992) Superantigens: biology, immunology and potential role in disease.J. Clin. Immunol. 12, 149–162.PubMedCrossRefGoogle Scholar
  71. 71.
    Licastro, F., Davis, L. J., and Morini, M. (1993) Lectins and superantigens: membrane interactions of these compounds with T lymphocytes affect immune responses.Int. J. Biochem. 25, 845–852.PubMedCrossRefGoogle Scholar
  72. 72.
    Galelli, A. and Truffa-Bachi, P. (1993)Urtica dioica agglutinin. A superantigenic lectin from stinging nettle rhizome.J. Immunol. 151, 1821–1831.PubMedGoogle Scholar
  73. 73.
    Woodland, D. L. and Blackman, M-A. (1993) How do T cell receptors, MHC molecules and superantigens get together?Immunol Today 14,,208–212.PubMedCrossRefGoogle Scholar
  74. 74.
    Ohnishi, H., Tanaka, T., Takahara, J., and Kotb, M. (1993) CD28 delivers costimulating signals for superantigen-induced activation of antigen-presenting cell-depleted human T lymphocytes.J. Immunol. 150, 3207–3214.PubMedGoogle Scholar
  75. 75.
    Damle, N. K., Klussman, K., Leytye, G., and Linsley, P. S. (1993) Proliferation of human T lymphocytes induced with superantigens is not dependent on costimulation by the CD28 counter-receptor B7.J. Immunol. 150, 726–735.PubMedGoogle Scholar
  76. 76.
    Quarantino, S., Murison, G., Knyba, R. E., Verhoef, A., and Londei, M. (1991) Human CD4-CD8-αΒ+ T cells express a functional T cell receptor and can be activated by superantigens.J. Immunol. 147,,3319–3323.Google Scholar
  77. 77.
    Avery, A. C., Markowitz, J. S., Grusby, M. J., Glimcher, L. H., and Cantor, H. (1994) Activation of T cells by superantigen in class II—negative mice.J. Immunol. 153, 4853–4861.PubMedGoogle Scholar
  78. 78.
    Gonzalo, J. A., Baixeras, E., González-Garcia, A., George-Chandy, A., Rooijen, N. V., Martinez-A, C., et al. (1994) Differential in vivo effects of a superantigen and an antibody targeted to the some T cell receptor.J. Immunol. 152, 1597–1608.PubMedGoogle Scholar
  79. 79.
    Udey, M. C., Chaplin, D. D., Wedner, H. J., and Parker, C. (1980) Early activation events in lectinstimulated human lymphocytes, evidence that wheat germ agglutinin and mitogenic lectins cause similar early changes in lymphocyte metabolism.J. Immunol. 125, 1544–1550.PubMedGoogle Scholar
  80. 80.
    Peumans, W. J., De Ley, M., and Broekaert, W. F. (1984) An unusual lectin from stinging nettle(Urtica dioica) rhizomes.FEBS Lett. 177, 99–103.CrossRefGoogle Scholar
  81. 81.
    Porstmann, T., Ternynck, T., and Avrameas, S. (1985) Quantitation of 5-bromo-2-deoxyuridine incorporation into DNA: an enzyme immunoassay for the assessment of the lymphoid cell proliferation response.J. Immunol. Methods 82, 169–179.PubMedCrossRefGoogle Scholar
  82. 82.
    Huong, P. L. T., Kolk, A. H. J., Eggelte, T. A., Verstijnen, C. P. H. J., Gilis, H., and Hendriks, J.T. (1991) Measurement of antigen specific lymphocyte proliferation using 5-bromo-deoxyuridine incorporation.J. Immunol. Methods 140, 243–248.PubMedCrossRefGoogle Scholar
  83. 83.
    Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays.J. Immunol. Methods 65, 55–63.PubMedCrossRefGoogle Scholar
  84. 84.
    Denizot, F. and Lang, R. (1986) Rapid colorimetric assay for cell growth and survival. Modification to the tetrazolium dye procedure giving improved sensitivity and reliability.J. Immunol. Methods 89, 271–277.PubMedCrossRefGoogle Scholar
  85. 85.
    Tada, H., Shiho, O., Kuroshima, K., Koyama, M., and Tsukamato, K. (1986) An improved colorimetric assay for interleukin 2.J. Immunol. Methods 93, 157–165.PubMedCrossRefGoogle Scholar
  86. 86.
    Hansen, M. B., Neilsen, S. E., and Berg, K. (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill.J. Immunol. Methods 119, 203–210.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  1. 1.Department of Transfusion MedicineAcademic UnitEdinburgh

Personalised recommendations