Biological Trace Element Research

, Volume 50, Issue 1, pp 79–85 | Cite as

Impairment of motor coordination in mice after ingestion of aluminum chloride

  • Gönül Şahin
  • Tambay Taşkin
  • Kemal Benli
  • Suna Duru
Original Articles


The mechanisms of aluminum (Al) neurotoxicity is of increasing interest. Al compounds are known to produce neurological and behavioral abnormalities in some mammalian species. The present study was designed to determine the effects of Al chloride on the skilled motor performance in mice on the rota-rod treadmill. Al chloride, depending on the duration of treatment, produced an impairment of the motor coordination ability in mice.

Index Entries

Aluminum chloride motor coordination rota-rod treadmill 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Sherlock, inAluminum in Food and the Environment, R. C. Massey and D. Taylor, eds, Special publication, no 73, Royal Society of Chemistry, London, pp. 68–76 (1988).Google Scholar
  2. 2.
    M. H. N. Golden,Hum. Nutr. Clin. Nutr. 36, 185–202 (1988).Google Scholar
  3. 3.
    Committee on nutrition,Pediatrics 78(6): 1150–1154 (1986).Google Scholar
  4. 4.
    P. O. Ganrot,Environ. Hth. Perspec. 65, 363–341 (1986).CrossRefGoogle Scholar
  5. 5.
    R. S. Jope and V. W. G. Johnson inNeurotoxic Effects of Aluminum, D. J. Chadwick and J. Whelan, eds., Ciba Foundation Symposium 169, John Wiley, New York, pp. 254–267 (1992).Google Scholar
  6. 6.
    G. M. Berlyne, J. Ben-Ari, E. Knoph, and R. G. M. Yagil,Lancet,1, 564–568 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    G. M. Berlyne, J. Ben-Ari, D. Pest, J. Weinberger, M. Stern, G. R. Gilmore, and R. Levine,Lancet,2, 494–496 (1970).PubMedCrossRefGoogle Scholar
  8. 8.
    J. M. Cam, V. A. Luck, J. B. Eastwood, and H. E. Dewardener,Clin. Sci. Mol. Med. 51, 407–414 (1976).PubMedGoogle Scholar
  9. 9.
    W. D. Kaehny, A. P. Hegg, and A. C. Alfrey,N. Engl. J. Med. 296, 1389–1390 (1977).PubMedCrossRefGoogle Scholar
  10. 10.
    A. J. Adler and G. M. Berlyne,Liver Physiol. 12, 6209–6213 (1985).Google Scholar
  11. 11.
    W. A. Banks and A. J. Kastin,Lancet 26, 1227–1229 (1983).CrossRefGoogle Scholar
  12. 12.
    R. L. Commissaris, J. J. Cordon, S. Sprague, J. Keiser, C. H. Mayor, and R. H. Rech,Neurobehav. Toxicol. Teratol,4, 403–410 (1982).PubMedGoogle Scholar
  13. 13.
    C. Cutrufo, S. Caroli, P. Delle Femmine, E. Ortolani, S. Palazzesi, N. Iolante, G. A. Zapponi, and A. Loizzo,J. Neurol. Neurosurg. Psychiat. 47, 204–206 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    R. J. Boegman and L. A. Bates,Can. J. Physiol. Pharmacol. 62, 1010–1014 (1984).PubMedGoogle Scholar
  15. 15.
    A. R. Bizzi, M. I. Crane, L. Yin, A. Gambetti, and P. Gambetti,J. Neuropathol. Exp. Neurol.,41, 331–334 (1983).Google Scholar
  16. 16.
    D. W. Bonhaus, K. M. McMormack, G. H. Mayor, J. C. Mattson, and J. B. Hook,Toxicol. Lett. 6, 141–147 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    D. P. Perl, D. C. Gajdusek, R. M. Garruto, R. T. Yanagihara, and C. J. Gibbs,Science,217, 1053–1055 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    D. R. Crapper-McLachlan and U. Deboni,Neurotoxicology,1, 3–16 (1980).Google Scholar
  19. 19.
    C. M. Yates, J. Simpsom, D. Russel, and A. Gordon,Brain Res.,197, 269–274 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    K. S. Kosik, W. G. Bradley, P. F. Good, C. G. Rasool, and D. J. Selkoe,J. Neuropathol. Exp. Neurol. 42, 365–375 (1983).PubMedGoogle Scholar
  21. 21.
    N. C. Bowdler, D. S. Beasley, and E. C. Fritze, et al.,Pharm Biochem Behav.,10, 505–512 (1979).CrossRefGoogle Scholar
  22. 22.
    A. Rabe, M. H. Lee, J. Shek, and H. M. Wisniewski, (1982),Exp. Neurol. 76, 441–446 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    D. R. Crapper and A. J. Dalton,Physiol. Behav.,10,(5), 925–933 (1972).CrossRefGoogle Scholar
  24. 24.
    U. De Boni, A. Otvos, J. W. Scott, and D. R. Crapper,Acta Neuropathol. (Berl.) 35, 285–294 (1976).Google Scholar
  25. 25.
    R. E. Exss and G. K. Summer,Brain Res. 49, 151–164 (1973).PubMedCrossRefGoogle Scholar
  26. 26.
    I. Klatzo, H. Wisniewski, and E. Streicher,J. Neuropathol. Exp. Neurol. 24, 187–199 (1965).PubMedGoogle Scholar
  27. 27.
    T. L. Petit, G. B. Biederman, and P. A. Mullen,Experimental Neurology,67, 152–162 (1980).PubMedCrossRefGoogle Scholar
  28. 28.
    E. Uemura,Experimental Neurology.85, 10–18 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    H. M. Wisniewski, J. A. Sturman, and J. W. Shek,Neurobiol Aging,3, 11–22 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    B. M. Thorne, T. T. Donohoe, K. Lin, S. Lyon, D. Medeiros, and M. L. Weaver,Physiol. and Behav. 36, 63–67 (1986).CrossRefGoogle Scholar
  31. 31.
    G. A. King, U. De Boni, and D. R. Crapper,Pharmacol. Biochem. Behav.,3, 1003–1009 (1975).PubMedCrossRefGoogle Scholar
  32. 32.
    G. Sahin, I. Varol, A. Temizer, K. Benli, R. Demirdamar, and S. Duru,Biol. Trace Element Res. 41, 129–135 (1994).Google Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • Gönül Şahin
    • 1
  • Tambay Taşkin
    • 2
  • Kemal Benli
    • 3
  • Suna Duru
    • 1
  1. 1.Department of Toxicology, Faculty of PharmacyHacettepe UniversityAnkaraTurkey
  2. 2.Deva Pharmaceutical CorporationIstanbulTurkey
  3. 3.Department of Neurosurgery, Faculty of MedicineHacettepe UniversityAnkaraTurkey

Personalised recommendations